DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering) Shahbad Daulatpur, Bawana Road Delhi – 110042

SCHEME OF TEACHING AND EVALUATION FOR M.TECH. BY RESEARCH IN INFORMATION TECHNOLOGY WITH SPECIALIZATION IN DATA SCIENCE AND ENGINEERING

				S	eme	ester	-]	[
Group	S.No.	Course Code	Course Name	Type/ Area	C r	L	Т	Р	CWS	PRS	MTE	ETE	PRE	Total Credits
	1	RUCC501	Research and Publication Ethics (RPE)	UCC	2	2	0	0	-	-	25	50	0	
	2	RUCC503	Research Methodology	UCC	4	4	0	0	25	-	25	50	0	
roup A	3	RITR501	Advance Data Structures and Algorithms	DCC	4	4/3	0	0/2	25/15	-/25	25 / 20	50 / 40	0	18
0	4	RITR505	Fundamentals of Data Science and Machine Learning	DCC	4	4/3	0	0/2	25/15	-/25	25 / 20	50 / 40	0	
	5	RITR507	Report 1	DCC	4	0	0	6	-	40/50	-	-	60 / 50	
				Se	eme	ster	- I	Ι						
Group	S.No.	Course Code	Course Name	Type/ Area	C r	L	Т	Р	CWS	PRS	MTE	ETE	PRE	Total Credits
	1	RITR502	Data Engineering and Analytics	DCC	4	4 / 3	0	0 / 2	25 / 15	- / 25	25 / 20	50 / 40	0	
p B	2	RITR504	Deep Learning and Applications	DCC	4	4 / 3	0	0 / 2	25 / 15	- / 25	25 / 20	50 / 40	0	22
Grou	3	RITR508	Report 2	DCC	6	0	0	6	-	40 / 50	-	-	60 / 50	
\mathbf{Gr}_{0}	4	RITR532	Elective 1	DEC/ GEC	4	4 / 3	0	0 / 2	25 / 15	- / 25	25 / 20	50 / 40	0	

	5	RITR534	M.Tech(R) Project	DEC	4	4	0	0	25	-	25	50	0	
	3		-1	GEC/	4	3	0	2	15	25	20	40	0	
				Se	mes	ster -	- II	Ι						
Group	S.No.	Course Code	Course Name	Type/ Area	C r	L	Т	Р	CWS	PRS	MTE	ETE	PRE	Total Credits
Grou	1	RITR631	M.Tech(R) Project -2	DEC/ GEC	4	4 / 3	0	0 / 2	25 / 15	- / 25	25 / 20	50 / 40	0	16
\mathbf{Gr}_{0}	2	RITR601	Report 3	DCC	12	0	0	12	-	40 / 50	-	-	60 / 50	
	-			Se	me	ster	- I'	V				-		-
Group	S.No.	Course Code	Course Name	Type/ Area	C r	L	Т	Р	CWS	PRS	MTE	ETE	PRE	Total Credits
Group	1	RITR602	Final Report	DCC	24	0	0	24	-	-	-	-	10 0	24
	List of Elective Courses													
	S.No.	Course Code	Course Name	Type/ Area	C r	L	Т	Р	CWS	PRS	MTE	ETE	PRE	Total Credits
	1	-	Financial Data Analytics	DEC	4	4/3	0	0/2	25/15	25	25/2 0	50/4 0	-	
	2	-	Quantum Computing	DEC	4	4/3	0	0/2	25/15	25	25/2 0	50/4 0	-	
	3	-	Advanced Computer Vision	DEC	4	4/3	0	0/2	25/15	25	25/2 0	50/4 0	-	
	4	-	Genrative AI	DEC	4	4/3	0	0/2	25/15	25	25/2 0	50/4 0	-	
	5	-	Image Analysis	DEC	4	4/3	0	0/2	25/15	25	25/2 0	50/4 0	-	
	6	-	Artificial Intelligence	DEC	4	4/3	0	0/2	25/15	25	25/2 0	50/4 0	-	
	7	-	Business Intelligence and data warehousing	DEC	4	4/3	0	0/2	25/15	25	25/2 0	50/4 0	-	
	8	-	Information Integration and Data Analytics	DEC	4	4/3	0	0/2	25/15	25	25/2 0	50/4 0	-	
	9	-	Distributed Cloud Computing	DEC	4	4/3	0	0/2	25/15	25	25/2 0	50/4 0	-	

10	-	Natural Language Processing	DEC	4	4/3	0	0/2	25/15	25	25/2 0	50/4 0	-	
11	-	Ethical AI	DEC	4	4/3	0	0/2	25/15	25	25/2 0	50/4 0	-	
12	-	Big Data Analytics	DEC	4	4/3	0	0/2	25/15	25	25/2 0	50/4 0	-	
13	-	GPU computing	DEC	4	4/3	0	0/2	25/15	25	25/2 0	50/4 0	-	

Cou	rse code: Course Title		Course Structu	ire	Pre-Requisite				
DITD501.	Advanced Data Structures	L	Т	Р	C/C++ Programming, Fo	oundations of			
KITK501:	Advanced Data Structures	3	0	2	Algorithms and Data	Structures			
Course Ob	jective: To provide in-depth kn	owledge and und	erstanding of adva	nced data structures, t	heir design, analysis, implemer	ntation, and to			
prepare stud	prepare students to tackle complex computational problems efficiently.								
S NO	NO Course Outcomes (CO)								
5.10	Un denotered and implement venious advanced trace structures								
	Understand and implement various advanced tree structures								
CO2	Utilize skip lists for randomize	d data structure o	perations and imp	lement advanced heap	structures				
CO3	Apply union-find algorithms f	or disjoint sets an	d solving problem	is related to graph repr	resentation				
CO4	Implement network flow algor	ithms as well as g	graph coloring tech	iniques					
CO5	Design and analyze approxima	tion algorithms for	or NP-hard proble	ms and geometric algo	prithms				
CO6	Implement dictionary abstract	data types and app	olying various has	hing techniques					
S NO			Contents			Contact Hours			
5.10			Contents			Contact Hours			
UNIT 1	Advanced Tree Structures:- : E Trees, 2-3 Trees, B-Trees, Spl	Binary Search Tree ay Trees: Concept	es, Balanced Mult t, Properties, Oper	i-way Trees, Segment rations	Tree AVL Trees, Red-Black	6			
UNIT 2	Skip Lists and Advanced Heaps Skip Lists: Need for Randomizing Data Structures and Algorithms, Search and Update Operations, Probabilistic Analysis, Deterministic Skip Lists Binomial Heaps: Structure, Basic Operations, Union, Insertion, Deletion Fibonacci Heaps: Structure, Insertion, Union, Decrease Key, Delete Node Pairing Heaps: Structure, Operations, and Analysis								
UNIT 3	Disjoint Sets and Advanced Graph Algorithms I Disjoint Sets: Union-Find Algorithms, Union by Rank, Path Compression, Applications Graph Representation: Types of Graphs, Paths, and Circuits, Euler Graphs: Concept and Properties Hamiltonian Paths & Circuits: Concept and Properties, Cut-sets: Definition and Applications Connectivity and Separability: Definitions and Applications, Planar Graphs: Concept and Properties Isomorphism: Concept and Applications								
UNIT 4	Advanced Graph Algorithms II and Network Flow Algorithms Network Flow Algorithms: Ford-Fulkerson Method, Edmonds-Karp Algorithm, Max-Flow Min-Cut Theorem Graph Coloring: Techniques, Algorithms, and Applications								
UNIT 5	Approximation Algorithms and Approximation Algorithms: Se Geometric Algorithms: Convex Points	l Geometric Algor t Cover, Max-SAT Hull Algorithms,	ithms 7, Knapsack, Bin P Lower Bound of	acking, Scheduling, Tı Convex Hull, Line Seg	raveling Salesman Tour ment Intersection, Closest Pair	7			
UNIT 6	Dictionaries, Hashing Dictionaries: Definition, Dictio Hashing: Review of Hashing, Separate Chaining, Open Addu Hashing.	onary Abstract Da Hash Function, C ressing, Linear Pr	ta Type, Impleme Collision Resolutio obing, Quadratic I	ntation of Dictionaries n Techniques in Hash Probing, Double Hash	ing, ing, Rehashing, Extendible	6			
			TOTAL			42			
DEFEDEN	ICES								
REFEREN						Voor of			
S.No.		Name o	of Books/Authors	s/Publishers		Publication / Reprint			
1	Introduction to Algorithms" by	y Thomas H. Corr	men, Charles E. L	eiserson, Ronald L. Ri	vest, and Clifford Stein	3rd Edition, 2009			
2	Algorithms" by Robert Sedgev	wick and Kevin W	Vayne			4th Edition, 2011			
3	Data structures and Algorithm student edition, John Wiley an	s in C++, Michae d Sons.	l T.Goodrich, R.T	amassia and D.Mount	, Seventh Edition Wiley	1st Edition, 2008			
4	Algorithm Design" by Jon Kle	einberg and Éva T	ardos			1st Edition, 2005			
5	Advanced Data Structures" by	Peter Brass				1st Edition, 2008			
<u>L</u>									

Course Title		Course Struct	ture	Pre-Requisite
	L	Т	Р	
RTTR505: Fundamentals of Data Science and Machine Learning	3	0	2	Probability, Statistics, Linear Algebra

Course Objective: 1. To familiarize with different types of data and its visualization.2. To understand and practice data pre-processing, data modeling and data exploration.3. To solve real-world analytical problems in data science.

S. NO.	Course Outcomes (CO)
CO1	Ability to identify different types of data and data distributions.
CO2	Ability to understand and apply different data cleaning and data transformation techniques.
CO3	Ability to understand and implement different data visualization techniques and data exploration techniques
CO4	Analyse and implement supervised learning algorithms like SVM, decision trees, neural networks for problem solving
CO5	Abiltiy to understand genetic algorithm and fuzzy sets.

S. NO.	Contents	Contact Hours
UNIT 1	Introduction to data science: Basics of Probability & Statistics (Random Variables, Bayes's Theorem, Normal distribution, Central Limit Theorem). Defining data science, Recognizing different types of data, Data distributions. Data acquisition and data storage. Data pre-processing: Missing data problem, Outlier definition. Data cleaning, Data transformation or data wrangling procedures such as merging, ordering and aggregating.	10
UNIT 2	Data visualization: Introduction to data visualization, Challenges of data visualization. Definition of Dashboard, Dashboard design and principles. Basic charts and plots, Box plots, Histogram, Graphs, Networks, Hierarchies, Reports.	6
UNIT 3	Exploratory Data Analysis: Data exploration for univariate data. Outlier detection techniques. Descriptive statistics (mean, standard deviation etc.) for data exploration. Correlation statistics for data exploration. Data exploration for multivariate data. Use of multivariate visualization tools such as bar charts, bar plots, heat maps, bubble charts, run charts, and scatter plots.	10
UNIT 4	Supervised Learning: Linear Regression models, classification, Linear discriminant analysis, Probably Approximately Correct (PAC) Learning, Learning Multiple Classes, Model Selection and Generalization, Support vector machine, Decision trees, Nearest neighbors, neural networks.	8
UNIT 5	Unsupervised Learning: Clustering, Mixture Models, Latent Variables, Expectation-Maximization, Feature selection, Dimensionality Reduction, Factor/Component Analysis, Linear Discriminant Analysis.	8
	TOTAL	42

REFERE	NCES	
S.No.	Name of Books/Authors/Publishers	Year of Publication / Reprint
1	Data Mining: Concepts and Techniques, Jiawei Han, Micheline Kamber and Jian Pei, 3rd ed., Morgan Kaufmann	2022
2	Data science from scratch, Joel Grus, 2nd ed., O'Reilly Media.	2019
3	Python data science handbook, Jake VanderPlas, 2nd ed., O'Reilly Media.	2016
4	Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, Aurélien Géron, 2nd ed., O'Reilly Media.	2019
5	Alpaydin, E, Introduction to Machine Learning, MIT Press, 2004	2004
6	David Barber, Machine Learning: A probabilistic approach, 2006.	2006
7	Charlie Kaufman, Radia Perlman and Mike Spencer, "Network Security: Private Communication in a Public World", Prentice Hall.	2002
8	Tom Mitchell, Machine Learning, McGraw Hill, 1997	1997

Course code: Course Title		Course Struct	ure	Pre-Requisite
RITR502: Data engineering and	L	Т	Р	
analytics	3	0	2	Probability, Statistics, Linear Algebra

Course Objective: 1. To familiarize with the concepts of data mining, data storage, data pipeline and data integration.2. To analyze data using classification, clustering, feature selection, association rule mining and itemset mining.3. To understand and explore data warehousing architectures and data lakes.

S. NO.	Course Outcomes (CO)
CO1	Ability to understand and describe data mining, data storage, data pipeline and data integration concepts.
CO2	Ability to understand and implement classification and clustering algorithms for analyzing linearly and non-linearly separable data.
CO3	Ability to understand and implement feature selection algorithms for data reduction.
CO4	Ability to understand and explore patterns and dependencies in data using association-rule mining and itemset-mining.
CO5	Ability to understand, explore and describe data warehousing architectures and data lakes.

S. NO.	Contents	Contact Hours
UNIT 1	Introduction to data engineering: Storing data, Data loading, Data transformation, Data structures, SQL and NoSQL databases, Database normalization, Data cubes, Snowflake scheme, Data warehouses, Data lakes, Data Marts, Metadata in Data Warehouse, Data pipeline, Data integration- Extract, Transform, and Load (ETL) processes for integrating data from multiple sources.	10
UNIT 2	Advanced data analytics and machine learning: Cluster Analysis, Types of Data in Cluster Analysis, Partitioning methods, Hierarchical Methods. Classification techniques for linearly separable and non-linearly separable data- Linear Discriminant Analysis and Support Vector Machine. Feature Ranking and Feature Selection Algorithms. Associations and correlations- basic concepts, efficient and scalable frequent item sets mining methods, mining various kinds of association rules, constraint-based association mining.	12
UNIT 3	Data warehousing : Planning Your Data Warehouse, The Data Warehouse Project, Architectural Components: Understanding Data Warehouse Architecture, Infrastructure Supporting Architecture, Collection of Tools. Indexing the data warehouse, performance enhancement techniques.	10
UNIT 4	Data design and data preparation : From Requirements to Data Design, The STAR Schema, STAR Schema Keys, Advantages of the STAR Schema. Data modeling for data warehouses. Scalable data engineering solutions - handling massive datasets. Online Analytical Processing models, Online Transaction Processing models.	10
	TOTAL	42

REFERENCES

S.No.	Name of Books/Authors/Publishers	Year of Publication / Reprint
1	Data Mining: Concepts and Techniques, Jiawei Han, Micheline Kamber and Jian Pei, 3rd ed., Morgan Kaufmann	2022
2	Mining Introductory and Advanced Topics, M.H. Dunham, Pearson Education.	2002
3	Data mining, Pieter Adriaans, Pearson Education.	1996
4	Data warehousing in the real world for building decision support systems, Sam Anahory, Pearson Education.	1997
5	The Data Warehouse Lifecycle toolkit, Ralph Kimball, John Wiley.	1996
6	Fundamentals of database systems, Ramez Elmasri, Pearson Education.	2000
7	Oracle8 data warehousing, Michael Corey, Tata McGraw Hill.	1998
8	Data Warehousing Fundamentals, Paulraj Ponniah, John Wiley.	2001

Cou	rse code: Course Title		Course Struc	ture	Pre-Requisit	e	
	Generative AI	L	Т	Р	Artifical Intellig	ence	
			0	2	i i i i i i i i i i i i i i i i i i i		
Course Ob	Course Objective: To learn the fundamental concepts of Blockchain technologies for various applications						
S. NO			Course	Outcomes (CO)			
CO1	Understand the fundamental c	concepts of transfo	ormers, diffusion	models, and their ap	plications in vision and language t	asks	
CO2	Analyze and differentiate betw	veen various trans	former architectu	res used in language	and vision, including GPT, BER	Γ, ViT, and CLIP.	
CO3	Implement and fine-tune multi	i-modal and gener	ative foundation	models using efficier	t training and inference technique	s	
CO4	Evaluate foundation models u	sing standard ben	chmarks and add	ress issues related to	hallucinations, bias, fairness, priv	acy, and prompt	
	1						
S. NO	Contents				Contact Hours		
UNIT 1	 Introduction to Foundation Models:Transformers & Attention : Introduction to Transformers, Self-Attention, Cross-Attention, Perceiver: Arbitrary IO with transformers, Self Attention & Non-Parametric Transformers Diffusion : Sampling, Diffusion Models, Latent Diffusion Models (LDM) Applications : LLMs, LVMs and Applications in Vision 					14	
UNIT 2	 Foundation Model Architectures:Foundation Model Architectures: Transformers in Language including GPT, BERT, RetNet, State Space ModelsTransformers in Vision: ViT, MLP-Mixer, Conformer, Vision-Language(VL) models, CLIP Architectures: Dual-Encoder, Fusion, Encoder-Decoder, Adapted LLM, Unified Architectures 				14		
UNIT 3	Multi-Modal & Generative Foundation Models:Training & Inference : Training Objectives , Contrastive Learning, Efficient Inference Techniques, Pre-training, Fine-tuning & Parameter Efficient Fine-tuning (LoRA, QLoRa), Flash Attention, Retrieval Augmented Generation (RAG)					8	
UNIT 4	4 Evaluation & Benchmarking: Evaluation Protocols and Standard Benchmarks, Hallucinations, Bias & Fairness, Privacy, Memorization, Machine Unlearning, Prompt Engineering				6		
	TOTAL					42	
REFEREN	NCES						

S.No.	Name of Books/Authors/Publishers	Year of Publication / Reprint
1	Generative AI with Python and TensorFlow 2: Create images, text, and music with VAEs, GANs, LSTMs, Transformer models" Joseph Babcock and Raghav Bali, packt Publishing	2021
2	"Learn Python Generative AI: Journey from autoencoders to transformers to large language models", Zonunfeli Ralte and Indrajit Kar, Bpb Publication.	2024
3	"Generative Deep Learning" By David Foster & Karl Friston, O'Reilly.	2023

Course code: Course Title		Course Structu	ire	Pre-Requisite
Business Intelligence and Data	L	Т	Р	DBMS
Warehousing	4	0	0	DBINIS

Course Objective: Give students the understanding on the role and operation of data warehouses, business intelligence. Equip students with skills of developing data warehouses. Equip students with skills of manipulating data warehouses to generate information for business decision making.

S NO		
5. NU		
C01	To understand business intelligence, DE normalizations and relational database review.	
CO2	To understand data warehouse, objetcs and various data sources	
CO3	To Understand data mining, various analytics algorithms and mobile analytics.	
CO4	To Understand business intelligence, various query designer and keys.	
CO5	To understand query properties, designing reports, visualization of business intelligence	
S. NO	Contents	Contact Hours
LINET 1	Introduction: Business Intelligence, Data Warehouses, Data mining, Pivot Tables, Relational Database review,	0
UNITI	Database Normalization, normal forms, DE normalization of tables, SQL, Data Warehousing fundamentals	8
UNIT 1	Modelling the data warehouse: Data sources, operational data store, data marts, Characteristics and key figures,	6
UNIT 2	Creating InfoObjects, Building InfoCubes	0
	Data Mining : Statistical techniques in data mining, Preparing data for mining, Association analysis, market basket	
UNIT 2	analysis, Clustering, Classification, Regression, Decisions Trees, Building analytics applications, Mobile analytics.	11
UNIT 5	Data Extraction, Transformation and Loading (ETL) in SAP BW Extraction from data sources such as SAP ERP,	11
	Flat file extraction. Defining and using Persistent staging areas PSA.	
	Introduction to Business Intelligence with Business Objects Analysis: Navigating in reports, Designing queries in the	0
UNIT 4	Query Designer, Using InfoProviders and InfoObjects for queries, Calculated and restricted key,	9
	Query properties and navigation, Exceptions and Conditions, Front end visualization of business intelligence,	0
UNIT 5	Designing Dashboards, Designing reports, Business Objects Web Intelligence, Crystal Reports.	8
	TOTAL	42
REFEREN	ICES	
		Year of
S.No.	Name of Books/Authors/Publishers	Publication /

		Reprint	
1	R. and Ross, The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling Kimball, M.Second	2006	
1	Edition. John Wiley & Sons	2006	
1	Richard O. Duda, Peter E. Hart, David G. Stork , "Pattern Classification", IInd edition, Wiley, 1973 Christopher M.	2002	
2	Bishop, "Pattern Recognition and Machine Learning",	2002	

Course code: Course Title		Course Structu	ıre	Pre-Requisite
Imaga Anakusia	L	Т	Р	
image Analysis	3	0	2	-

Course Objective: The course aims to provide students with comprehensive knowledge and practical skills in image analysis, including techniques for image enhancement, restoration, segmentation, and the application of various algorithms to effectively interpret and process digital images.

S. NO	Course Outcomes (CO)	
CO1	Understand the fundamental concepts of a digital image processing system.	
CO2	Analyze images in the frequency domain using various transforms.	
CO3	Evaluate techniques for image enhancement in the spatial and frequency domain.	
CO4	Elucidate the mathematical modelling of image restoration.	
CO5	Interpret image segmentation and representation techniques.	
	<u>.</u>	
S. NO	Contents	Contact Hours
UNIT 1	Fundamental steps in DIP, concept of visual information, image formation model, image sampling and quantization, digital image representation, spatial and gray level resolution, relationship between pixels, application of image processing system.	8

UNIT 2	Introduction to Multidimensional signals and systems, 2D-Signals, 2D systems, classification of 2D system, 2D convolution, 2D Z-transform, Image Transform: 2DDFT, discrete cosine, discrete sine, Haar, Walsh, Hadamard, Slant, KL, SVD, Hough, Radon, Ridgelet.	10
UNIT 3	Image enhancement; Spatial domain: linear transformation, image negative, grey level shifting, non-linear transformation, logarithmic transformation, exponential transformation, grey level slicing, bit plane slicing, image averaging, mask processing, histogram manipulations.	8
UNIT 4	Image Restoration :Image Restoration – degradation model, Properties, Noise models – Mean Filters – Order Statistics – Adaptive filters – Band reject Filters – Band pass Filters – Notch Filters – Optimum Notch Filtering – Inverse Filtering – Wiener filtering	8
UNIT 5	Image Segmentation :Edge detection, Edge linking via Hough transform – Thresholding – Region based segmentation – Region growing – Region splitting and merging – Morphological processing- erosion and dilation.	8
	TOTAL	42
REFEREN	NCES	
S.No.	Name of Books/Authors/Publishers	Year of Publication / Reprint
1	Rafael C. Gonzalez, Richard Eugene Woods "Digital Image Processing" 3rd Edition.	2008
2	Anil K. Jain, Fundamentals of Digital Image Processing Pearson.	2002
3	Kenneth R. Castleman, Digital Image Processing Pearson.	2006
4	Rafael C. Gonzalez, Richard E. Woods, Steven Eddins, Digital Image Processing using MATLAB Pearson Education, Inc.	2011

Cour	ourse code: Course Title Course Structure Pre-Requisit		te				
Δ	rtificial intelligence	L	Т	Р	Basic course on probabilit	v and statistics	
П		4	0	0	Basic course on probabilit	y and statistics	
Course Ob and reasoni	Course Objective: To familiarize the student with the foundations of Artificial Intelligence (AI) and to trace the evolution of AI from knowledge and reasoning based techniques to contemporary AI technologies.						
S. NO			Course (Outcomes (CO)			
CO1	To analyze different types of a	gents and enviror	nments.				
CO2	To design and analyze various	intelligent search	techniques.				
CO3	To represent knowledge using	Predicate logic.					
CO4	To solve rule-based systems,	Resolution, and s	emantic nets and f	rames.			
C05	To implement probabilistic rea	soning and infere	encing systems.				
C06	To understand the design of re	eal-world intellige	nt systems and ap	plications.			
S NO						Contact Hours	
UNIT 1	Introduction: Foundations of A Intelligent agents, types of age Problem Solving: Basic Probl search.	AI, AI Problems, ents and environm em-solving Metho	Task Domains of ents. od: state space sea	AI, Introduction to I	ntelligent program and ation, uninformed and informed	8	
UNIT 2	 Heuristic search Techniques: Hill climbing techniques, Best First search, A* Search, Problem Reduction: AO* Search, Constraint Satisfaction. Evolutionary and metaheuristic algorithms- genetic algorithm, simulated annealing. Game Plaving: Game Tree. Searching procedure Minimax, alpha-beta pruning. 				10		
UNIT 3	 Knowledge Representation: Knowledge Representation issues. Knowledge Representation using Predicate Logic: Unification, resolution. Rule based Systems: Forward versus backward reasoning, conflict resolution. Structured Knowledge Representation: Semantic Nets, Frames, conceptual dependency, scripts. 				10		
UNIT 4	4 Reasoning: Handling uncertainty Non-Monotonic Reasoning, Probabilistic reasoning, Belief networks, fuzzy logic, neural nets. 8				8		
UNIT 5	5 Applications: Expert Systems: Architecture, Domain Knowledge, Knowledge Acquisition, Case Studies: Computer Vision, Natural language Processing, Speech recognition, Information retrieval, Robotics etc.				6		
			TOTAL			42	
DEFER							
S.No.		Name	of Books/Author	s/Publishers		Year of Publication / Reprint	

1	1. S.Russel, P.Norvig, Artificial Intelligence – A Modern Approach. Second Edition, PHI/ Pearson Education.	2011
2	2. E. Rich and K. Knight, Artificial Intelligence, E. Rich and K. Knight, TMH, 2nd ed.(ISBN- 978-0070522633)	2018
3	3. N.J. Nilsson, Principles of AI, Narosa Publ. House, (ISBN: 978-81-85198-29-3).	1980
4	4. E. Charniak, D. McDermott, Introduction to Artificial Intelligence, Addison Wesley (ISBN: 0201119455)	1985
5	 George F. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem Solving (5th Edition), 2005. Addison-Wesley. (ISBN: 978-8131723272) 	1994

Cou	Course code: Course Title Course Structure Pre-Requisite		e			
RITR:	504: Deep Learning and	L	Т	Р		
	Applications	3	0	2		
Course Ob convolution	Course Objective: To provide students with an in-depth understanding of deep learning concepts and architectures, including neural networks, convolutional networks, recurrent networks, and their applications.					
S NO			Course	Dutaamas (CO)		
5. NU			Course C	Jutcomes (CO)		
CO1	Understand the foundation and	l scope of Deep N	Neural networks			
CO2	To Explore predicate logic and	its applications to	o understand know	wledge representation.		
СО3	To solve rule-based systems, I	Resolution, and so	emantic nets and f	rames		
CO4	To implement probabilistic rea	soning and infere	ncing systems			
C05	To Study AI-based expert sys	tems, including a	chitecture, domain	n knowledge, and know	wledge acquisition.	
S NO			Contents			Contact Hours
5.110	Liter hatten Davies of ton 1	· · · · · · · · · · · · · · · · · · ·		E.t.	O	Contact Hours
UNIT 1	Introduction: Basics of deep learning, Importance of deep learning, Feature engineering, Overview of deep learning framework.					6
UNIT 2	Machine Learning Basics: Supervised learning algorithms, Hyper parameters and validation sets, overfitting, under fitting, Unsupervised learning algorithms, Stochastic Gradient Descent, Challenges motivating Deep Learning. 9				9	
UNIT 3	Deep feed forward network: Artificial Neural Network, activation function, multi-layer neural network, Training Neural Network: Risk minimization, loss function, backpropagation, regularization, model selection, and optimization, Data Augmentation, Dropout.			9		
UNIT 4	Convolutional Networks (CNN): Motivation, The Convolution Operation, Pooling, Structured outputs, Kernels. Recurrent and Recursive Nets: Recurrent Neural Networks (RNN), Bidirectional RNNs, Deep Recurrent Networks, Recursive Neural Networks, Long-Term Dependencies, Long-Short Term Memory, Gated RNNs.			9		
UNIT 5	Applications: Large scale deep learning, Computer vision, Speech Recognition, Natural Language Processing, Other applications, Deep Learning Tools and Libraries: Caffe, Theano, Keras.			9		
	TOTAL 42				42	
DEEEDEN	ICES					
S.No.	Name of Books/Authors/Publishers				Year of Publication / Reprint	
1	Goodfellow, I., Bengio, Y., an	d Courville, A., I	Deep Learning, MI	T Press.		2006
2	Python Deep Learning, by Va Ltd.	lentino Zocca, Gi	anmarioSpacagna,	Daniel Slater, and Pet	ter Roelants, Packt Publishing	2017
3	Satish Kumar, Neural Networ	ks: A Classroom	Approach, Tata M	IcGraw-Hill Education	1.	2004

Course code: Course Title		Course Structure		Pre-Requisite		
Natural language processing	L	Т	Р	Pasia source on probability and statistics		
Naturai language processing	4	0	0	Basic course on probability and statistics		
Course Objective: To explore and design computer systems that are able to process and understand spoken or written text in natural languages like English, and generate their outputs in a natural language.						
S. NO Course Outcomes (CO)						

CO1	To understand and implement text pre-processing techniques and pattern matching using regular expressions.	
CO2	To execute syntactic parsing of sentences for a given grammar and probabilistic inferencing.	
CO3	To implement Bag-of-Words models for feature extraction and machine learning for text classification.	
CO4	To analyze the use of word embeddings and sequence learning using LSTM or transformer.	
C05	To examine text generation models using Language modelling and encoder-decoder models.	
CO6	To explore real-world applications of Natural Language Processing and Natural Language Generation.	
S. NO	Contents	Contact Hours
UNIT 1	The study of Language, Introduction to NLP and various terms related to NLP- morphology, syntax, semantics, pragmatics, discourse, ambiguity. Regular Expression, Finite State Automata.	6
UNIT 2	Pre-processing: Tokenization, Lemmatization, Stemming. Frequency Based Methods: Count Vectorizer, Bag of Words, 1-hot encoding, TF, TF-IDF, Machine learning classifiers. Prediction Based Methods: Word Embeddings, LSTM/Transformer.	10
UNIT 3	Word Senses, WordNet, Synsets, Hypernyms, Hyponyms, Meronyms, Holonyms, Word Sense Disambiguation, Word Similarity, Semantic Role Labelling.	8
UNIT 4	Probabilistic Context-Free Grammars, Syntactic Parsing, Part-of-speech-tagging, Probabilistic Language Processing, N-gram language modelling. Encoder-decoder model for sequence-to-sequence learning, Attention mechanism.	10
UNIT 5	Intelligent Work Processors, Machine Translation, User Interfaces, Man-Machine Interfaces, Natural language Question-Answering Systems, Speech Recognition, Commercial use of NLP, Semantic Interpretation, Information Retrieval.	8
	TOTAL	42
DEEDEN		
NEFENEI	CES	Voor of
S.No.	Name of Books/Authors/Publishers	Publication / Reprint
1	D. Jurafsky, J. H. Martin, Speech and Language Processing, Pearson Education,(ISBN-13: 978-8131716724)	2008
2	James Allen, Natural Language Understanding, 2/e, Pearson Education (ISBN 13: 9788131708958)	2003
3	Manning and Schutze, Foundation of Statistical Natural Language Processing, (ISBN-13: 978-0262133609)	1998
4	Bharati, Chaitanya and Sangal: Natural Language Processing- a Paninian perspective(ISBN-13: 978-8120309210)	1995
5	Leonard Bole. (Ed.): Natural Language Parsing Systems, Springer Verlag, (ISBN-13: 978-0387175379)	1986

Cou	urse code: Course Title		Course Struct	ure	Pre-Requisite				
		L	Т	Р	â.				
	GPU Computing	3	0	2					
Course O	bjective: The course aims to pro	ovide students with	n a comprehensiv	e understanding of GPU	architecture and parallel computing principles,				
S. NO			Course	Outcomes (CO)					
CO1	To import basic knowledge of	f GPU architecture	e and usage, featu	res and security aspects.					
CO2	To learn the languages, compilers, and data management required for GPU computing.								
CO3	To learn how to preserve a data's availability, integrity, and confidentiality.								
CO4	To recognize various network security procedures in order to defend against threats in networks.								
CO5	To be able to assess system security in relation to the proper application of security services and methods.								
	•								
S. NO			Contents		Contact Hours				
UNIT 1	Introduction: History, GPU A Parallel Programming, CUDA Warps/Wavefronts, Threadble properties, Simple Programs	Architecture, Clock A OpenCL / Open/ ocks/Workgroups,	speeds, CPU / C ACC, Kernels La Streaming multi	GPU comparisons, Heter unch parameters, Thread processors, 1D/2D/3D th	pegeneity, Accelerators, hierarchy, read mapping, Device 8				

UNIT 2	Memory: Memory hierarchy, DRAM / global, local / shared, private / local, textures, Constant Memory, Pointers, Parameter Passing, Arrays and dynamic Memory, Multi-dimensional Arrays, Memory Allocation, Memory copying	9
	actors devices, i tograms with matrices, i enormance evaluation with different memories	
UNIT 3	Synchronization: Memory Consistency, Barriers (local versus global), Atomics, Memory fence. Prefix sum, Reduction. Programs for concurrent Data Structures such as Worklists, Linked-lists. Synchronization across CPU and GPU Functions: Device functions, Host functions, Kernels functions, Using libraries (such as Thrust), and developing libraries.	9
UNIT 4	Support: Debugging GPU Programs. Profiling, Profile tools, Performance aspects Streams: Asynchronous processing, tasks, Task-dependence, Overlapped data transfers, Default Stream, Synchronization with streams. Events, Event-based- Synchronization - Overlapping data transfer and kernel execution, pitfalls.	8
UNIT 5	Advanced topics: Dynamic parallelism, Unified Virtual Memory, Multi-GPU processing, Peer access, Heterogeneous processing	8
	TOTAL	42
DEEEDEN	CES .	
KEFEKEN	CES	Vear of
S.No.	Name of Books/Authors/Publishers	Publication / Reprint
1	K R. Fernando and M. Kilgard, "The Cg Tutorial: The Definitive Guide to Programmable Real-Time.	2003
2	E. Kandrot and J. Sanders, Cuda by Example: an Introduction to General-Purpose Gpu Programming, Addison Wesley	2010
3	David B. Kirk, Wen-mei W. Hwu, Morgan Kaufmann, Programming Massively Parallel Processors: A Hands-on App	2010
4	Wen-Mei w. Hwu, Morgan Kaufmann, GPU Computing GEMS Emerald Edition.	2011

Cou	Course code: Course Title Course Structure Pre-Requisite		e					
Financial Data Analytics		L	Т	Р	Python Exc	وا		
	anciai Data Milaiyuks	3	0	2	i ytiloli, Exc	G		
Course Ob them to mal	Course Objective: Equip students with the knowledge and skills to analyze financial data using statistical and computational techniques, enabling hem to make informed decisions, detect patterns, and predict trends in financial markets.							
S. NO			Course	Outcomes (CO)				
CO1	Use spreadsheets to perform Extracting, Transforming and Loading (ETL) from different financial data sources							
CO2	Understand financial analytics	s major tools and	techniques					
CO3	Understand data modeling and	create relational	database					
CO4	Understand data visualization theories and techniques and use visualization techniques to visualize real-time and off-line financial data							
C05	Learn how to create written re	ports and present	analysis results to	o different financial and	d non-financial audiences			
G NO	1		<u> </u>			C · · · ·		
S. NO			Contents			Contact Hours		
UNIT 1	Useful Excel Functions in F Essential Excel Functions for • Basic data manipulation - sea • Descriptive analytics • Data aggregation techniques • Advanced functions	nance Analyzing Finan urching, sorting, f for single and mu	cial Data iltering, and basic Iltiple financial da	statistics.		8		
UNIT 2	ETL and Power Queries Connecting Excel to Financia week) • ETL techniques • Connecting Excel to popular Add-in) • Connecting Excel to cloud at • Using Power Query to perfo • Creating and editing queries	l & Non-Financia financial data sou nd web data sourc rm ETL in Excel in Power Query	l Data Sources, a rrces using vendo es	nd ETL (Extracting, Tr r provided Excel Add-	ransforming and Loading) (3	8		

UNIT 3	Relational Database, Data Models and Power Pivots Databases, Data Model and Power Pivots (2 week) • Introduction to Relational Databases • Excel's data models and how they can empower financial data analysis • Representation of financial data in data models, data relationships and joins • Basing pivot tables on a data model • Calculated columns, measures, and the DAX language	8
UNIT 4	Big Data, Cloud-based Analytics and Analytics Automation Cloud-based and Automated Analytics (1 week) • Cloud storage for financial data and analytics findings • Financial analytics in the cloud • Automated analytics • Crowd analytics (or wisdom of the crowd)	10
UNIT 5	Introduction to predictive analytics • Types of analytics • Supervised versus unsupervised learning for financial and non-financial data • Model performance evaluation • Case studies on business problems, analytical techniques and tools (e.g., Excel macros & VBA, machine learning/data mining, and artificial intelligence)	8
	TOTAL	42
REFEREN	ICES	-
S.No.	Name of Books/Authors/Publishers	Year of Publication / Reprint
1	Data Analytics Made Easy: Analyze and present data to make informed decisions without writing any code By Andrea De Mauro Publication date :Aug 30, 2021 1st Edition ISBN-13 :9781801074155	2021
2	Financial Data Analytics with Machine Learning, Optimization and Statistics (Wiley Finance) 1st Edition by Yongzhao Chen, Ka Chun Cheung, Kaiser Fan, Phillip Yam	
3	Financial Data Analytics: Theory and Application by Sinem Derindere Köseoğlu Springer Nature, 25 Apr 2022	2022
4	Machine Learning in Finance: From Theory to Practice 1st ed. 2020 Edition by Matthew F. Dixon (Author), Igor Halperin (Author), Paul Bilokon (Author) Format: Kindle Edition	2020

Cou	rse code: Course Title		Course Struct	ure	Pre-Requisit	e		
1	Big Data Analytics	L	Т	Р	Database Management system			
	8	3	0	2	· ·			
Course Ob	Course Objective: Mastering the process of mapping and knowlegde extraction from huge volumes of data.							
S. NO	S NO Course Outcomes (CO)							
COL	To learn about distributed file	system		(00)				
0	To learn about distributed the	system.						
CO2	To understand the working of	Apache Hadoop	ecosystem.					
CO3	To underatand working and co	ommands of Hdoc	op.					
CO4	To study usgaes and design og Hbase concepts.							
C05	To apply big data analytics in real life problem solving .							
	I							
S. NO			Contents			Contact Hours		
UNIT 1	Introduction – distributed file Big data applications. Algorith	system – Big Data nms using map rec	a and its importan luce.	ce, Four Vs, Drivers f	for Big data, Big data analytics,	8		
UNIT 2	Big Data – Apache Hadoop & Hadoop EcoSystem – Moving Data in and out of Hadoop – Understanding inputs and outputs of MapReduce - Data Serialization.					8		
UNIT 3	Hadoop Architecture, Hadoop Storage: HDFS, Common Hadoop Shell commands , Anatomy of File Write and Read., NameNode, Secondary NameNode, and DataNode, Hadoop MapReduce paradigm, Map and Reduce tasks, Job, Task trackers - Cluster Setup – SSH & Hadoop Configuration – HDFS Administering –Monitoring & Maintenance.					9		
UNIT 4	HBase concepts- Advanced Usage, Schema Design, Advance Indexing - PIG, Zookeeper - how it helps in monitoring a cluster, HBase uses Zookeeper 9					9		
UNIT 5	Data Analytics with R: Machi Filtering. Big Data Analytics	ne Learning: Intro with BigR.	duction, Supervis	ed Learning, Unsuper	vised Learning, Collaborative	8		
			TOTAL			42		
DEEDEN	ICES							
REFEREN	(CES							

S.No.	Name of Books/Authors/Publishers	Year of Publication / Reprint
1	C. J. Date Addison-Wesley, Introduction to Database Systems . 8th Ed. Publisher: Addison-Wesley; 8 edition (August 1, 2003) ISBN-10: 0321197844/ ISBN-13: 978-0321197849.	2003
2	R. A. Mata-Toledo and P. Cushman, Fundamentals of SQL Programming. Schaum's Outline Series. McGraw-Hill (2000).	2000
3	H. Garcia-Molina and et al. Prentice Hall, Database Systems the Complete Book; 2ndEdition (June 15, 2008). ISBN-10: 0131873253 / ISBN-13: 978- 013187325	2008
4	R. Elmasri and S. Navathe . Addison-Wesley, Fundamentals of Database Systems Addison-Wesley; 6 edition (April 9, 2010) ISBN-10: 0136086209 / ISBN-13: 978-0136086208	2010

Cou	rse code: Course Title		Course Stru	cture	Pre-Requis	ite
Informa	tion Integration and Data	L	T	P	Artificial Intelligenc	e, Statistics
	Analyucs	3	U	2		
Course Ob	jective: To have an expertise in	analysing big o	lata volumes usin	g statistical met	hods for decision making.	
S. NO			Course	e Outcomes (C	0)	
C01	To learn basic statistical model	s for data anlys	is.		·	
CO2	To learn supervised learning m	ethods.				
CO3	To implement unsupervised lea	rning models.				
CO4	To experiment with different in	formation integ	gration and dat mo	odels.		
C05	To implement data analytics in	real life applica	tions.			
S NO			Contont			Contract House
5. NU			Content	5		Contact Hours
UNIT 1	Introduction to data analytics, I through hypothesis tests	Probability dist	ributions, Model 1	fitting, Descript	ive statistics, Inferential Statistics	8
UNIT 2	Supervised learning: Linear and logistic Regression, Lasso regression, ANNOVA, Linear and quadratic discriminant analysis, K-nearest neighbors, neural networks, deep learning, support vector machines, decision trees, random forest					8
UNIT 3	Unsupervised learning: Introdu Unsupervised model fitting, A	action to Cluste ssociative rule	ring mechanisms, mining, Anomaly	, K-means clust detection	ering, Hierarchical clustering,	8
UNIT 4	Overview of information integration, integrated views and schema mapping, impact of increasing the number of data sources, data compression, record linking, data exchange, data fusion, data cleaning, source modeling, and 9 information extraction					9
UNIT 5	Retrieving data from Big data management systems, processing on Hadoop and Spark, Integration for Multi-channel customer analytics, Case studies, Data integration tools-Splunk and Datameer, Semantic web (RDF, OWL, 9) SPARQL), linked data and services, mash-ups				9	
			TOTAL	4		42
REFEREN	ICES					
S.No.		Name	e of Books/Auth	ors/Publishers		Year of Publication / Reprint
1	Hastie, Trevor, et al. The eleme	ents of statistica	l learning. Vol. 2	. No. 1. New Y	ork: springer, 2009.	2009
2	Doan, AnHai, Alon Halevy, ar C., and George C. Runger. Ap	nd Zachary Ives plied statistics	s. Principles of da and probability fo	ta integration. E r engineers. Joh	Elsevier, 2012 Montgomery, Douglas nn Wiley & Sons.	2010
3	C. J. Date Addison-Wesley, In (August 1, 2003) ISBN-10: 03	ntroduction to I 21197844/ ISI	Database Systems 3N-13: 978-0321	. 8th Ed. Publis 197849.	sher: Addison-Wesley; 8 edition	2003

Cou	rse code: Course Title	Course Structure		ıre	Pre-Requisite		
Advanced Commuter Vision		L	Т	Р			
Auva	inced Computer vision	3	0	2			
Course Ob approaches,	Course Objective: To gain a profound understanding of the theories, algorithms of the state-of-the-art of computer vision, various mathematical approaches, and the applications to video processing and vision-based modeling and interaction. This is a research-orientated course.						
S. NO	S. NO Course Outcomes (CO)						
CO1	Understand master image repr	esentation, featur	e extraction, and	other image process	sing techniques to tackle real-world issues in many		
	disciplines like.						

CO2	Implement and understand the benefits of the advanced Deep learning concept of Fine-tuning on pre-trained models such	ch as YOLO					
CO3	Understand and implement the Image Classification using Computer vision and Deep learning techniques like Convolutional Neural Networks						
CO4	Perform the domain anomaly detection and adaptation using Transfer learning & the pre-trained models, Fine Tuning of the pre-trained models						
CO5	Understand domain adaptation and anomaly detection by fine-tuning pre-trained models like YOLO for enhanced object applying transfer learning algorithms for anomaly detection.	t detection and					
S. NO	Contents	Contact Hours					
UNIT 1	Image Processing: Image representation, feature extraction and matching, Image filters, Edge detection, Image texture analysis, Clustering, Model Fitting.	8					
UNIT 2	Image classification: Implementation of Image Classification using Computer vision and Deep learning techniques like Convolutional Neural Networks and segmentation, Applications: Traffic Flow Analysis, 3D model Building.	11					
UNIT 3	Object Segmentation and Detection: Object Segmentation and detection using Python deep learning libraries like PyTorch Object detection and tracking: Tracking with linear dynamical models, Optical flow estimation, Object tracking using deep neural networks. Applications: Defect detection, OCR detection, Cancer Detection	11					
UNIT 4	Introduction to Transfer Learning: What is Transfer Learning, How Transfer Works, and Why Should You Use Transfer Learning? Steps to Use Transfer Learning, Model Building in Transfer Learning, Code Implementation of Transfer Learning	6					
UNIT 5	Fine-tuning pre-trained models: Implement the advanced Deep learning concept of Fine-tuning on pre-trained models such as YOLO. Domain adaptation & anomaly detection: Perform the anomaly detection using Transfer learning algorithms	6					
	TOTAL	42					
DFFFDFN	ICES						
S.No.	Name of Books/Authors/Publishers	Year of Publication / Reprint					
1	D. Forsyth and J. Ponce ,Computer Vision - A modern approach, Prentice Hall	2013					
2	Linda Shapiro and George Stockman, Computer Vision, Prentice-Hall, 2001.	2001					
3	Szeliski, Richard. Computer vision: algorithms and applications. Springer Science & Business Media, 2010.	2010					
4	Deep Learning by I. Goodfellow, Y. Bengio, A. Courville, MIT Press 2016.	2016					
5	E. Trucco and A. Verri, Introductory Techniques for 3D Computer Vision, Publisher: PHI COMPUTER SECURITY.	1994					

Cou	rse code: Course Title		Course Struc	ture	Pre-Requisit	e	
0	uantum Computing	L	Т	Р	Linear Algebra & Pi	obability	
· · ·		3	1	0			
Course Ob analysis of quantum me	Course Objective: This module aims to provide a self-contained, comprehensive introduction to quantum computing, focusing on the design and analysis of quantum algorithms, as well as covering topics in quantum information and quantum cryptography, such as: quantum teleportation, quantum money, and post-quantum cryptography.						
S. NO			Course	Outcomes (CO)			
C01	Understand the quantum comp	uting paradigm.					
CO2	State the four postulates of quather notions of quantum states,	antum mechanics unitary evolution,	s and their applic, measurements,	ation to computation and composite system	- Design and analyse quantum al s.	gorithms Grasp	
CO3	Understand the implications of	quantum comput	ting on cryptogra	phy and security.			
CO4	Analyse fundamental quantum The Deutsch-Jozsa paradigm.	algorithms:- Sho	or's algorithm	Grover's search Th	e Berstein-Vazirani algorithm S	imon's problem	
S. NO			Contents			Contact Hours	
UNIT 1	Introduction to Quantum comp the context of quantum informa quantum mechanics, qubits, qu	uting: motivation ation, Dirac's bra antum gates and	, foundations, ar cket notation, lin circuits.	d prominent applicati hitation of classical al	ons. Review of linear algebra in gorithms. The four postulates of	9	
UNIT 2	Basic quantum algorithms: I circuits via QISKIT.	— Deutsch's alg	gorithm, analysii	ng quantum algorithr	ns, and implementing quantum	6	
UNIT 3	Basic quantum algorithms II – Grover's quantum search algor RSA, and Shor's integer factor	- Simon's proble tithm, the BBBV risation algorithm	m and the Berns Theorem, and ap	tein -V-azirani algorit	hm. s algorithm.	12	

UNIT 4	Introduction to quantum cryptography (post-quantum security, quantum key distribution).	7
UNIT 5	Introduction to quantum information (superdense coding, nocloning theorem, quantum teleportation) Applications (quantum money, the Elitzur-Vaidman bomb).	8
	TOTAL	42
REFEREN	ICES	
S.No.	Name of Books/Authors/Publishers	Year of Publication / Reprint
1	Nielse ,"Quantum Computation And Quantum Information", Cambridge University Press	2013
2	Chuck Easttom, "QUANTUM COMPUTING FUNDAMENTALS", Pearson Education.	2022
3	Parag K. Lala, "QUANTUM COMPUTING", McGraw Hill	2020
4	Daniel J. Bernstein (Editor), Erik Dahmen (Editor), Johannes Buchmann (Editor), "Post-Quantum Cryptography", Springer-Verlag Berlin and Heidelberg Gmb	2010
5	Thomas Vidick, StephanieWehner, Thomas, Stephanie Wehner, Thomas Vidick, "Introduction to Quantum Cryptography" Cambridge University Press	2023

Course code: Course Title		Course Structure			Pre-Requisite	
Ethical AI		L	Т	Р	Artifical Intelligence	
		4	0	0		
C	to the The shire of the second			11.4	····· (AT) 4·····1·· AT	1
Course Of	bjective: The objective of the co	urse is to know a	bout the responsi	bility of artificial intellig	sence (AI) to make AI more us	eful for society
and numan	ity. The course will also teach p	rinciples and prac	tices to perform r	esponsible AI.		
C NO			Course	Outcomes (CO)		
5. NU	To be able to state concete of a		Louise	outcomes (CO)		
	To be able to state aspects of r	esponsible AI suc	I as fairness, acc	ountability, blas, privac	by etc.	
CO2 CO2	To be able to assess the fairness	in models and ren	1 modules.			
<u>C03</u>	To be able to enforce fairness	in models and ren	nove blas in data.			
C04 C05	To be able to preserve the priv	acy of individuals	s while learning h	rom mem.	the two deepforwith a company	
0.05	To be able to develop respons	ible AI modules i	or given practical	problems and estimate	the tradeoff with accuracy.	
S NO			Contonte			Contact Hours
5.10			Contents			Contact Hours
UNIT 1	Artificial Intelligence Fundan Humanity	nentals, Introduct	ion to responsib	le AI, Need for ethics	in AI. AI for Society and	7
UNIT 2	Fairness and Bias: Sources of Biases, Exploratory data analysis, limitation of a dataset, Preprocessing, inprocessing and postprocessing to remove bias, Group fairness and Individual fairness, Counterfactual fairness			9		
UNIT 3	Interpretability and explainability: Interpretability through simplification and visualization, Intrinsic interpretable methods, Post Hoc interpretability, Explainability through causality, Model agnostic Interpretation			10		
UNIT 4	Ethics and Accountability: Auditing AI models, fairness assessment, Principles for ethical practices Privacy preservation: Attack models, Privacy-preserving Learning, Differential privacy, Federated learning			10		
UNIT 5	Case study: Recommendation	systems, Medical	diagnosis, Comp	outer Vision, Natural La	inguage Processing	6
			TOTAL			42
REFEREN	NCES					
S.No.		Name	of Books/Author	rs/Publishers		Year of Publication / Reprint
1	Virginia Dignum, "Responsib	le Artificial Intelli	gence: How to D	evelop and Use AI in a	Responsible Way" Springer	2003
2	Christoph Molnar "Interpretab	ole Machine Learn	ing" Lulu 1sted	ition March 24 2019	Book ISBN-10	2002

Course code: Course Title	Course Structure			Pre-Requisite	
Business Intelligence and Data	L	Т	Р	DBWS	
Warehousing	4	0	0	DBMS	

Course Objective: Give students the understanding on the role and operation of data warehouses, business intelligence. Equip students with skills of developing data warehouses. Equip students with skills of manipulating data warehouses to generate information for business decision making.

S. NO	Course Outcomes (CO)
CO1	To understand business intelligence, DE normalizations and relational database review.
CO2	To understand data warehouse, objetes and various data sources
CO3	To Understand data mining, various analytics algorithms and mobile analytics.
CO4	To Understand business intelligence, various query designer and keys.
CO5	To understand query properties, designing reports, visualization of business intelligence

S. NO	Contents	Contact Hours
UNIT 1	Introduction: Business Intelligence, Data Warehouses, Data mining, Pivot Tables, Relational Database review, Database Normalization, normal forms, DE normalization of tables, SQL, Data Warehousing fundamentals	8
UNIT 2	Modelling the data warehouse: Data sources, operational data store, data marts, Characteristics and key figures, Creating InfoObjects, Building InfoCubes	6
UNIT 3	Data Mining : Statistical techniques in data mining, Preparing data for mining, Association analysis, market basket analysis, Clustering, Classification, Regression, Decisions Trees, Building analytics applications, Mobile analytics. Data Extraction, Transformation and Loading (ETL) in SAP BW Extraction from data sources such as SAP ERP, Flat file extraction, Defining and using Persistent staging areas PSA.	11
UNIT 4	Introduction to Business Intelligence with Business Objects Analysis: Navigating in reports, Designing queries in the Query Designer, Using InfoProviders and InfoObjects for queries, Calculated and restricted key,	9
UNIT 5	Query properties and navigation, Exceptions and Conditions, Front end visualization of business intelligence, Designing Dashboards, Designing reports, Business Objects Web Intelligence, Crystal Reports.	8
	TOTAL	42
1		

REFERENCES

S.No.	Name of Books/Authors/Publishers	Year of Publication / Reprint
1	R. and Ross, The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling Kimball, M.Second Edition. John Wiley & Sons	2006
2	Richard O. Duda, Peter E. Hart, David G. Stork, "Pattern Classification", IInd edition, Wiley, 1973 Christopher M. Bishop, "Pattern Recognition and Machine Learning",	2002

Course code: Course Title	Course Structure			Pre-Requisite
Distribused Cloud Computing	L	Т	Р	DBMS
Distributed Cloud Computing	4	0	0	

Course Objective: To Understand the Fundamentals of Distributed Computing, Master Cloud Computing Technologies, Implement Distributed Applications on the Cloud, Manage Data in Distributed Cloud Systems

S. NO	Course Outcomes (CO)	
C01	Describe system models for distributed and cloud computing.	
CO2	Describe the design principles of computer clusters and data centers.	
CO3	Describe and distinguish different virtualization techniques.	
CO4	Explain cloud enabling technologies, cloud mechanisms, and cloud architectures.	
S. NO	Contents	Contact Hours
UNIT 1	Introduction to Clouds, Virtualization and Virtual Machine: Introduction to Cloud Computing:,Cloud computing vs. Distributed computing, Utility computing, Features of today's Clouds: Massive scale, AAS Classification: HaaS, IaaS, PaaS, SaaS, Data-intensive Computing, New Cloud Paradigms, Categories of Clouds: Private clouds, Public clouds, Virtualization: What's virtualization, Benefits of Virtualization, Virtualization Models: Bare metal, Hosted hypervisor, Types of Virtualization: Processor virtualization, Memory virtualization, Full virtualization, Para virtualization, Device virtualization, Hotspot Mitigation for Virtual Machine Migration: Enterprise Data Centers, Data Center Workloads, Provisioning methods, Sandipiper Architecture, Resource provisioning, Black-box approach, Gray-box approach, Live VM Migration Stages, Hotspot Mitigation	8
UNIT 2	Network Virtualization and Geo-distributed Clouds Server Virtualization: Methods of virtualization: Using Docker, Using Linux containers, Approaches for Networking of VMs: Hardware approach: Single-root I/O virtualization (SR-IOV), Software approach: Open vSwitch, Mininet and its applications Software Defined Network: Key ideas of SDN, Evolution of SDN, SDN challenges, Multi-tenant Data Centers: The challenges, Network virtualization, Case Study: VL2, NVP Geo-distributed Cloud Data Centers: Inter-Data Center Networking, Data center interconnection techniques: MPLS, Google's B4 and Microsoft's Swan Leader Election in Cloud, Distributed Systems and Industry Systems Leader Election in Rings (Classical Distributed Algorithms): LeLann-Chang-Roberts (LCR) algorithm, The Hirschberg and Sinclair (HS) algorithm Leader Election (Ring LE & Bully LE Algorithm): Leader Election Problem, Ring based leader election, Bully based leader election, Leader Election in Industry Systems: Google's Chubby and Apache Zookeeper, Design of Zookeeper: Race condition, Deadlock, Coordination, Zookeeper design goals, Data model, Zookeeper architecture, Sessions, States, Usecases, Operations, Access Control List (ACL), Zookeeper applications: Katta, Yahoo! Message Broker	6

UNIT 3	Classical Distributed Algorithms and the Industry Systems: Time and Clock Synchronization in Cloud Data Centers: Synchronization in the cloud, Key challenges, Clock Skew, Clock Drift, External and Internal clock synchronization, Christians algorithm, Error bounds, Network time protocol (NTP), Berkley's algorithm, Datacenter time protocol (DTP), Logical (or Lamport) ordering, Lamport timestamps, Vector timestamps Global State and Snapshot Recording Algorithms: Global state, Issues in Recording a Global State, Model of Communication, Snapshot algorithm: Chandy-Lamport Algorithm Distributed Mutual Exclusion: Mutual Exclusion in Cloud, Central algorithm, Ring-based Mutual Exclusion, Lamport's algorithm, Ricart-Agrawala's algorithm, Quorum-based Mutual Exclusion, Maekawa's algorithm, Problem of Deadlocks, Handling Deadlocks, Industry Mutual Exclusion : Chubby Failures & Recovery Approaches in Distributed Systems: Local checkpoint, Consistent states, Interaction with outside world, Messages, Domino effect, Problem of Livelock, Rollback recovery schemes, Checkpointing and Recovery Algorithms: Koo-Toueg Coordinated Checkpointing Algorithm	11
UNIT 4	Cloud Storage: Key-value stores/NoSQL : Design of Key-Value Stores: Key-value Abstraction, Key-value/NoSQL Data Model, Design of Apache Cassandra, Data Placement Strategies, Snitches, Writes, Bloom Filter, Compaction, Deletes, Read, Membership, CAP Theorem, Eventual Consistency, Consistency levels in Cassandra, Consistency Solutions, Design of HBase: What is HBase, HBase Architecture, Components, Data model, Storage Hierarchy, Cross-Datacenter Replication, Auto Sharding and Distribution, Bloom Filter, Fold, Store, and Shift	9
UNIT 5	Cloud Applications: MapReduce, Spark and Apache Kafka MapReduce: Paradigm, Programming Model, Applications, Scheduling, Fault-Tolerance, Implementation Overview, Examples, Introduction to Spark: Resilient Distributed Datasets (RDDs), RDD Operations, Spark applications: Page Rank Algorithm, GraphX, GraphX API, GraphX working, Introduction to Kafka: What is Kafka, Use cases for	8
	TOTAL	42
REFEREN	JCFS	
KEI EKEI		Vear of
S.No.	Name of Books/Authors/Publishers	Publication / Reprint
1	Distributed and Cloud Computing by Kai Hwang, Jack Dongarra, Geoffrey C. Fox Released December 2013	2013
2	Scalable Parallel Computing: Technology, Architecture, Programming Hardcover - Import, 16 September 1997 by	1997
3	CLOUD COMPUTING A PRACTICAL APPROACH Paperback - 1 July 2017 by Toby Velte (Author), Anthony	2017