	Course Outcomes of MOC			
Sr. No.	Course Code & Title	Course Outcomes		
1	Antenna Design and Analysis (MOC501)	MOC501.2 MOC501.3 MOC501.4	Classify different type of antennas based on its designs and applications Apply analytical or empirical formulas for theoretical analysis to design and develop a micro-strip antenna Implement the concept of antenna array and realize it to design different types of arrays. Understand concept of smart antenna to achieve beam forming Measure antenna parameters to analyze designed antenna's performance.	
		MOC503.1	Describe the components of optical communication system, i.e., fibers, optical sources and detectors Differentiate and compare different optical signalling schemes and optical line coding schemes in optical	
2	OPTICAL COMMUNICATION SYSTEMS (MOC503)	MOC503.3	communications Explain the working of a homodyne and heterodyne receiver Analyze the performance of optical receivers for various modulation and demodulation schemes Design an optical communication system by calculating the power and time budget	
3	SEMICONDUCTOR OPTOELECTRONICS (MOC505)	MOC505.2 MOC505.3 MOC505.4	Explain the fundamentals of semiconductor device physics such as the E-k diagram and working of the p-n junction Differentiate between the optical interband transitions in semiconductors Illustrate the working principles of optical sources (LEDs and LASERS), Analyze the performance of various types of photo-detectors based on their device characteristics and efficiency Evaluate the performance of different types of optical modulators and optical amplifiers	
4	RF AND MICROWAVE CIRCUITS (MOC507)	MOC507.2 MOC507.3 MOC507.4	Explain working principle of different planar components by using network analysis. Construct the circuit in simulator and then fabricate it by using photolithography technique Analyze the design equations to develop circuit model in simulator to perform comparative analysis. Design, develop, optimize, fabricate and test different micro-strip components. Compare the performance of the micro-strip component in both simulations in measurements	

		MOC511.1	Describe the various optical multiplexing techniques used in photonic networks
5	Photonic Switches & Networking	MOC511.2	Compare and contrast the various topologies of single and multi-hop networks
		MOC511.3	Illustrate the working principles of devices used in photonic networks
		MOC511.4	Differentiate between the various optical networks such as SONET and DQDB based on their technical differences
	(MOC511)	MOC511.5	Analyze the performance of different photonic switches
	Nanophotonic	MOC513.1	Explain the fundamentals of light-mater interactions and the electromagnetic response of media at different frequencies
		MOC513.2	Identify the advantages and limitations of tailoring the optical and electromagnetic properties of nanophotonic materials and devices
6	Devices for Communication	MOC513.3	Apply the knowledge of fundamentals of nanophotonics to design sensors and other nanophotonic devices
	(MOC513)	MOC513.4	Illustrate the fundamentals of metamaterials and metasurfaces and their applications
		MOC513.5	Describe the nanofabrication processes employed to fabricate nanophotonic devices
		MOC515.1	Explore the fundamental concepts of radar systems, including radar parameters, detection theory, and types of radars.
		MOC515.2	Analyze radar signal processing techniques, including waveform design, matched filtering, and clutter modeling.
7	Technology for RADAR Systems (MOC515)	MOC515.3	Evaluate radar measurement techniques and interpret range, velocity, and ambiguity diagrams
		MOC515.4	Demonstrate knowledge of radar tracking techniques and imaging systems such as mono- pulse, conical scan, and Doppler radars.
		MOC515.5	Apply modern and emerging technologies, including optical techniques, to enhance radar system functionality.
	SEMICONDUCTOR MICROWAVE DEVICES (MOC517)	MOC517.1	Understand the fundamental concepts of semiconductor physics and the formation mechanism of p-n junction and Schottky contact
		MOC517.2	Introduce various types of semiconductor-based diodes useful in microwave engineering
8		MOC517.3	Analyze and design various semiconductor microwave devices such as BJT, FETs and HEMTs
		MOC517.4	Analyze and apply small-signal and large-signal models of Bipolar Junction Transistors (BJTs) and Field-Effect Transistors (FETs) for RF circuits
		MOC517.5	Analyze the S-parameters for microwave semiconductor devices

		UEC501.1	Understand the structure and components of a research paper, including title, abstract, introduction, methodology, results, and conclusion
9	English for Research Paper	UEC501.2	Develop clarity, precision, and coherence in academic writing using appropriate vocabulary, grammar, and formal tone.
	Writing	UEC501.3	Apply proper citation styles, referencing methods, and avoid plagiarism through ethical research writing practices.
	(UEC501)	UEC501.4	Critically review and revise drafts to improve content flow, argument strength, and language accuracy.
		UEC501.5	Prepare and present publication-ready research papers and confidently respond to peer review and editorial feedback
		MOC502.1	Apply modal analysis to illustrate the working of an optical fiber waveguide
	OPTICAL	MOC502.2	Illustrate the working principles of optical resonators
	ELECTRONICS	MOC502.3	Design phase and amplitude modulators based on electro-optic modulation of laser beams
10	(MOC502)	MOC502.4	Describe acousto-optic modulation based on Raman Nath and Bragg diffraction
		MOC502.5	Discuss the principles of non-linearity in optical fibers and their application to self-phase modulation
		MOC504.1	Explain working
	Microwave Active Circuits	MOC504.2	Construct the circuit in 3-D simulator and then optimize its performance for different applications
11	(MOC504)	MOC504.3	Analyze the design equations to develop circuit model in
		MOC504.4	Design, develop, optimize, fabricate and test different RF active components.
		MOC504.5	Distinguish different type of RF and microwave active devices based upon its circuit model.
		MOC520.1	Describe the fundamentals of light matter interaction, and sensing
		MOC520.2	Discuss the fiber optic sensors based on different sensing modalities
12	Biomedical	MOC520.3	Illustrate the working principles of Plasmonic, FBG and LPG based sensors
	Photonics	MOC520.4	Differentiate and compare the various techniques of biomedical spectroscopy
	(MOC520)	MOC520.5	Illustrate the various imaging and image reconstruction approaches

13	Solar Photovoltaics (MOC522)	MOC522.1	Describe the fundamentals of the sun-earth interaction and the need of solar photovoltaics
		MOC522.2	Illustrate the working principles of a solar cell and solar PV modules
		MOC522.3	Design solar cells and calculate the photovoltaic efficiency of a solar cell
		MOC522.4	Compare and contrast the various solar cell technologies on the basis of their efficiency, ease of fabrication and other important parameters
		MOC522.5	Describe and compare various emerging solar cell technologies
		MOC524.1	Demonstrate a solid understanding of the fundamental principles of antenna arrays, including array factor, radiation pattern, beamforming, and sidelobe suppression.
14		MOC524.2	Explore various optimization techniques used for antenna array design and performance
	Antenna Arrays and Beamforming	MOC524.3	enhancement, including gradient-based methods, metaheuristic algorithms, and numerical optimization approaches
	(MOC524)	MOC524.4	Develop the ability to apply optimization methods to antenna array problems, including optimizing beam patterns, steering angles, and array geometries to meet specific
		MOC524.5	performance requirements
	Milli-meter Wave Technology (MOC530)	MOC530.1	Explore the fundamentals of millimeter waves, frequency bands, propagation, guiding structures, and their practical applications
15		MOC530.2	Analyze the design and function of mmWave components such as couplers, tee junctions, waveguide transitions, and filters.
		MOC530.3	Demonstrate knowledge of various mmWave antenna types including planar, horn, lens, and biomedical antennas.
		MOC530.4	Design and evaluate mmWave systems, including frequency multipliers, transceivers, and calibration systems.
		MOC530.5	Apply mmWave technologies in real-world communication systems and conduct basic system-level performance evaluations.
16	Smart Antennas (MOC532)	MOC532.1	Explore the architecture, types, benefits, and limitations of smart antennas and their applications in modern communication systems.
		MOC532.2	Analyze and compare various smart antenna configurations including beamforming, diversity techniques, and adaptive arrays.
		MOC532.3	Apply mathematical and signal processing techniques for Angle-of-Arrival (AOA) estimation using multiple estimation methods.
		MOC532.4	Evaluate the principles and performance of MIMO antenna systems, including SISO, SIMO, MISO, and massive MIMO configurations.
		MOC532.5	Demonstrate knowledge of 5G technologies, including architecture, radio access networks, spectrum usage, and system design considerations.

		MOC534.1	Investigate the requirements, standards, and challenges associated with implantable antennas.
	Diamodiant	MOC534.2	Understand computational methods such as Green's Function Methodology and Finite
17	Biomedical Antennas (MOC534)	MOC534.3	Difference Time Domain (FDTD) Methodology for analyzing implantable antennas.
	(1100354)	MOC534.4	Investigate the effects of conductors on small wire antennas inside biological tissue.
		MOC534.5	Explore the behaviour of antennas inside human body using various models
		MOC536.1	Describe the working of an optical wireless communication system
		MOC536.2	Apply indoor and outdoor channel models to evaluate an OWC system
18	Free Space Optical	MOC536.3	Compare and contrast the different models of turbulence induced fading
	Communications (MOC536)	MOC536.4	Differentiate between the various modulation schemes for optical wireless communication based on their power and bandwidth efficiency
	(1100550)	MOC536.5	Design an optical wireless communication system such as a vehicle-to-vehicle OWC system
		UCC502.1	To understand the fundamental principles of research and different types of research methodologi
19	Research	UCC502.2	To comprehend the concept of literature review, technical reading, and the importance of citations and attributions in research.
	Methodology and	UCC502.3	To understand the concepts of Intellectual Property Rights (IPR) in engineering and their significanc
	IPR (UCC502)	UCC502.4	To understand the importance of IPR protection and be able to identify potential patentable inventions.
		UCC502.5	To be able to contribute to research projects and collaborate with others.
	Microwave Measurement	MOC601.1	Explain the fundamentals of RF, microwave, and millimeter-wave power measurement and frequency determination.
20	Techniques (MOC601)	MOC601.2	Describe the working and applications of Vector Network Analyzers (VNA) and Scalar Network Analyzers (SNA)
		MOC601.3	Analyze the role and usage of Spectrum Analyzers for SatCom antenna evaluation.
		MOC601.4	Understand and apply noise measurement techniques in RF/microwave systems
		MOC601.5	Evaluate antenna measurement parameters and microwave signal generation techniques (DDS, PLL).
		OEC601.1	Implement the Fresnel transform, the Fourier transform, and the extended Fourier transform
	- . .	OEC601.2	Discuss the application of spatial light modulation in signal processing
	Optical Signal	OEC601.3	Elaborate the process of spatial filtering

21	Processing	OEC601.4	Compare and contrast the techniques employed for generating spatial filters
	(OEC 601)	OEC601.5	Design a preliminary optical signal processor