Brief Academic Research Profile of Prof. Anil Kumar

- Name and address Dr. Anil Kumar, FRSC, FNASc (*Ex-Professor*, Dept. of Chemistry, *Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, INDIA*)
 Present Affiliation: Adjunct Faculty, Applied Department of Chemistry, Delhi Technological University, Bawana Road, Delhi.
- 2. Email(s) Address: <u>anil.kumar@cy.iitr.ac.in;</u> akmshfcy@gmail.com

3. <u>Academic Administrative Experience</u>:

- **Professor & Head**, Department of Chemistry (May 2013 to February 2016) *Indian Institute of Technology Roorkee*, Roorkee-247667, Uttarakhand, INDIA.
- Founder Head, Centre of Excellence Nanotechnology (June 2006 to Dec. 2011), *Indian Institute of Technology Roorkee*, Roorkee-247667, Uttarakhand, INDIA.

4. Academic Achievements

Professional Recognition/ Award/ Prize/ National Academy / Society Fellowship received:

	Professional Recognition/National Academy/Society	
S No	Fellowships	Year
1.	Lifetime Achievement Recognition given by Indian Society	2024
	for Radiation and Photochemical Sciences, BARC, Mumbai	
	in the area of <i>Photochemistry</i> , especially for <i>Nanomaterials</i>	
	Related Research during Trombay Symposium on Radiation	
	and Photochemistry-2024, Mumbai.	
2.	Selected NASI-Senior Scientist Platinum Jubilee Fellow	2019
	The National Academy of Sciences, Allahabad, India	
3.	Fellow of	2018
	Royal Society of Chemistry (FRSC)	
4.	Elected Fellow,	2003
	The National Academy of Sciences (FNASc), Allahabad,	
	India	
5.	Elected Member	1982
	American Chemical Society	

A-a. Professional Recognition

b. Other Awards/Prizes/Fellowships

S. No.	Awards/Recognition Year	
1.	Professor Emeritus, Netaji Subhas Univ. of Technology, New Delhi	2022- <mark>2024</mark> (~1 Year)

	Professor (Emeritus Fellow), Indian Institute of Technology Roorkee, Roorkee	<mark>2019 –2022</mark>
2.	G.B. Pant Institute Chair Professor,	<mark>2018 –2021</mark>
	Indian Institute of Technology Roorkee, Roorkee	
3.	Bharat Vikas Award – 2017 For outstanding performance in the field of " <i>Development of Nanostructured Materials</i> ", Institute of Self Reliance, Bhubaneshwar, Odisha.	2017
4.	Selected for Higher Administrative Grade (HAG) scale by IIT Roorkee, Roorkee	<mark>2013</mark>
5.	Received Certificate of Appreciation by American Chemical Society, USA for valuable contribution and dedicated service in the Peer Review of manuscripts submitted to ACS Journals.	2011, 2024
6.	Star Performer Selected for Academic and Professional Excellence, Indian Institute of Technology Roorkee, Roorkee	2003-04 and 2004-05
7.	First Khosla Research Prize and a Medal on a Research Paper on "Electronic properties of Q-CdS clusters stabilized by adenine" I.I.T. Roorkee.	2002
8.	Khosla Research Award and a Silver Medal on a Research Paper, "Photoluminescence of colloidal cadmium sulfide in the presence of aniline - study of the CdS – sensistized photocatalytic reaction", Univ. of Roorkee.	1993
9.	<mark>Guest Scientist</mark> Hahn-Meitner-Institut, Berlin, Germany	Feb. 1986 - Feb. 1988 (~2 Years)
10.	CSIR Pool Officer	April 1982- June 1983
11.	Research Associate Radiation Laboratory, Univ. of Notre Dame, Notre Dame, Indiana –46556, USA	1979 - 1982 (~3 Years)
12a.	CSIR Postdoctoral Fellow	1978-79
12b.	Received CSIR (New Delhi) Fellowships throughout research career in India as JRF	1973-77
13.	Received Gold Medal and a Certificate Being Topper in M.Sc., S.D. College, Muzaffarnagar (Meerut University)	1973

(B). <u>Recognitions</u>

• **Ph.D. Thesis Supervision:** "In situ Synthesis of Heteroatom(s) (N/S/P) Co-doped Porous Reduced Graphene Oxide as Electrode Material(s) for Designing of Binder-free and Highmass loaded Sustainable High Performance Aqueous Symmetric Supercapacitor and Electrochemical Sensor" by **Ikrar Ahmad** is adjudged an Outstanding **Ph.D. work in Science** Stream under the category of Fundamental Research. It fetched him the "Excellence in Doctoral Research Award" from IIT Roorkee.

- Based on our research paper: I. Ahmad and Anil Kumar "In-situ synthesis of N, S co-doped electrode material by an environmentally benign method towards designing of high voltage (3.0 V) binder-free sustainable aqueous symmetric supercapacitor", in Chem. Engg. J., 477, 146972 (1-16) (2023), I. Ahmad has been awarded Prof. V.K. Gupta Memorial Impactful Young Researcher Award vide letter dated May 08, 2024.
- International Popular Scientist Award "Best Researcher Award" for the Contribution and Honourable Achievement in Innovative Research by ScienceFather, 8th Dec. 2023.
- Member of International Scientific Committee, Trombay Symposium on Radiation and Photochemistry-2022, and Chaired a Session in this Prestigious Conference on 12th January 2022.
- Our innovation on "Nitrogen doped Reduced Graphene Oxide (N-rGO) for High-Performance Supercapacitor" contributed by Anil Kumar and Sahil Thareja has been identified by the prestigious Confederation of Indian Industry (CII) among the notable innovations from IIT Roorkee during 2021.
- Ph.D. Thesis Supervision: "Synthesis of N-Doped Reduced Graphene Oxide and its Nanohybrids as Electrode Material(S) for Electrochemical Applications – An Analysis of the Role of different Aqueous Electrolytes on their Supercapacitive Performance" by Sahil Thareja, fetched him INYAS National Research Excellence Award 2021 and among the Best Thesis in Electrochemistry.
- **Reviewer** for reputed journals from ACS, RSC. Elsevier, Wiley and Springer. Reviewed Scientific Projects from **SERB/DST**, **CSIR** and **UGC**.
- Nominated by the Institute to SERB, New Delhi for the award of National Science Chair (2021).
- Delivered an Invited Lecture as a *Resource Person* in the Orientation Program to *B.Tech 1st year Students (Freshers)* as per *MHRD Guidelines* at NIT Kurukshetra on "*Role of Basic Sciences to The Development of Advanced Technology*" on 9th August 2019.
- The paper, entitled "High Performance Symmetric Supercapacitor based on Nitrogen doped Reduced Graphene Oxide" by Sahil Thareja and Anil Kumar, presented by Sahil Thareja won the **Best Poster Award** in DAE-BRNS sponsored conference on Electrochemistry in Industry, Health and Environment-2020 (EIHE-2020) held during 21-25th January 2020, BARC, Mumbai, India.
- Invited for several conferences abroad and in India as an Invited Speaker / Organizing Committee Member.

- The paper, entitled "Synthesis of Glucose-Mediated Ag-γ- Fe₂O₃ Multifunctional Nanocomposites A Study of their Catalytic and Antibacterial Activities" by Mandeep Kaloti, Anil Kumar and N.K. Navani, presented by Mandeep Kaloti won the Second-Best Poster Award in International Conference on Advanced Materials for Energy, Environment and Health (ICAM-2016) held during 04-07th March 2016, IIT Roorkee, Roorkee, India.
- Our paper, entitled "Viscoelastic Properties of Superparamagnetic 5'-Adenosine Monophosphate-Mediated Porous β-FeOOH Hydrogel – Its Loading, and Release Capabilities" by Anil Kumar and Sudhir K. Gupta and presented by Sudhir K. Gupta, won the Best Poster Award in 9th India Japan Bilateral Conference (BICON-2014) on Advanced Material Science and Engineering.
- Honorable Guest, 2nd International Conference & Exhibition on Materials Science and Engineering, October 07-09, *2013, Las Vegas, USA*.
- Expert, Annual Review Committee, Radiation and Photochemistry Division, *BARC*, Mumbai, March 2012 and June 2008.
- Member, Expert Committee, CSIR (SRF/RA) during 2024, 2018 & 2008-10.
- Two of our research papers on 'Nanotechnology Aspects' have been listed/selected under the most accessed papers in the first quarter in 'Langmuir' (2007) and 'Nanotechnology' (2009).
- 'Synthesis of Fe₂O₃/Ag Core Shell Nanocomposites' by Anil Kumar and Aditi Singhal and presented by Ms. Aditi Singhal, won the Second Best Poster Prize in "Nanomaterials and Devices Processing and Applications" (NADPA 2008).
- Member, DST (New Delhi), National Management Committee for the National Centre for Ultrafast Processes, Univ. of Madras during *1999-2003*.

(C). <u>Professional Activities</u>:

- Elected Member, American Chemical Society (ACS), USA (1982); Member (2007 onwards contd.).
- Fellow, Royal Society of Chemistry (RSC), UK, 2018 onwards
- Member, Mirror Committee on Nanotechnology, Bureau of Indian Standards, New Delhi, 2007 2014.
- ★ Member, Sigma Xi, the Scientific Research Society, USA (1981).
- Life Member, Indian Society for Radiation and Photochemical Sciences (ISRAPS), Mumbai (1999).
- **Elected Member**, Life Member, Indian Chemical Society, Kolkata (F-3802).
- **Chemical Research Society of India, Bangalore.**
- * Life Member, Indian Association of Solid-State Chemists and Allied Scientists (ISCAS).
- 9. <u>Teaching & Research Experience</u>(Please see parts A toJ)

Areas of Academic Interest:

Molecular Spectroscopy, Kinetics and Photochemistry, Radiation Chemistry, Nanoscale

materials, Chemical Thermodynamics, Surface Chemistry and General Physical Chemistry.

Research Interest

Nanotechnology – Synthesis of colloidal metal and semiconductors, and carbonaceous nanomaterials employing greener protocols; Study of their Physicochemical Properties and Energy related Applications. Kinetic analysis of early events in: thermal, photochemical and radiation-induced reactions, specifically in nonmaterial(s).

(A). *Teaching Experience* (Approx. in years) Undergraduate 41 Postgraduate 42

We have made several *innovative contributions to the teaching and research* in the areas related to Physical Chemistry. In particular, we have developed teaching curriculum on *kinetics, photo- and radiation chemistry, spectroscopy, nanoscale materials, supramolecular chemistry, thermodynamics, surface chemistry and undergraduate physical chemistry, and have been instrumental in developing several advanced research facilities at the institute as a faculty as well as being the Founder Head, Centre of Excellence – Nanotechnology and Head, Department of Chemistry.*

(B) <u>Research Publications in Journals / Presented in Conferences:</u>

Total number of Publications in SCI Journals: 104

Refereed Journals– Total 104 in SCI Journals [ACS 22 (02 in JACS); RSC 24; Elsevier 20; Wiley 06; IOP 03; Springer 04; Taylor & Francis 01; Indian Journals 08; Others 16]

Total Citations as per Google Scholar Data (*Excluding Self-Citations*) (Approx.): 2505 (~2100); h-index 27; i10-index 68. Citations during last 05 years since 2020 (as per Google Scholar data) ~ 698; h-index 16; i10-index 23.

Some Highlights of our Research Work

- We have taken several *research initiatives* at IIT Roorkee (erstwhile UOR). Some of these also got recognition globally as is reflected by *citations* (approx.) of our *papers* in: different books (35); important international journals such as: Angew. Chem. /Nature including Scientific Reports and Nature Nanotechnology (12); ACS (>165); RSC (>130); Elsevier/Springer/Wiley (>600); and other journals as well as thesis (600), excluding self-citations as per Google record.
- Most of our research work, contributed in India after joining faculty position, is *primarily carried out* at UOR/IITR and has authorship(s) with my students (largely with 2 authors).
- Many of our Ph.D. students, willing to visit abroad, got *fellowship(s)* in good institutions and after returning back several of them are occupying good *teaching/scientific* positions. My first student has held/holding *key position(s)* in *pharma/chemical* industries.
- Since last 20 years, we have mainly focused on *greener* approach nanotechnology to *design new biocompatible materials* for their *multifunctional applications*. Our recent *publications* and *research projects* (ongoing/completed) also reflect these *objectives*. During about last 5.5 years, *i.e.*, from (2018 to present), we have published about 17 papers in *International*

Journals of repute with an *average impact factor* of ~ 6 , which indicates the **importance of** our work in the context of current scientific importance.

(C). List of Research Papers Published in the Area of Nanotechnology/Nanochemistry

(Note: Since 1985 we are mainly working on Nanomaterials related to Energy Applications and publishing this work in fairly high impact journals with an average impact factor of >6).

Total Paper Published in this Area -75 Nos.

S. No.	Details of Published Research Paper	Q Ranking of Journal	Impact Factor
		as per SJR (2021)	(2022-23)
1.	I. Ahmad and Anil Kumar	Q1(1.393)	7.21
	Heteroatom(s) (N, S, P) Co-doped Reduced Graphene Oxide-based		
	Binder-free Novel Energy Storage Electrode Material for High		
	Energy Density Supercapacitor.		
	Adv. Sustain. Syst., DOI:10.1002/adsu.202400174 (2024).		
2.	1. Ahmad and Anil Kumar	Q1(2.8)	15.1
	In -situ synthesis of N, S co-doped electrode material by an		
	environmentally benign method towards designing of high voltage (3.0 V) binder free sustainable acueous symmetric superconnector		
	(5.0 v) binder-nee sustainable aqueous symmetric supercapacitor.		
	https://doi.org/10.1016/i.cei.2023.146972		
3.	Atul Kumar, Anil Kumar, * G.D Varma	O1(0.69)	
	Flexible humidity-tolerant γ -Fe ₂ O ₃ -rGO-based nanohybrids for		3.925
	energy efficient selective NO_2 gas sensing.		
	<i>New J. Chem.</i> 47 (NJ047010), 4871-4879 (2023).		
4.	S. Thareja and Anil Kumar	Q1(0.822)	
	One-pot In-situ Synthesis of Mn ₃ O ₄ /N-rGO Nanohybrids for the		4.654
	Fabrication of High Cell Voltage Aqueous Symmetric		
	Supercapacitor – An Analysis of Redox Activity of Mn_3O_4		
	I owards Stabilizing the High Potential window in Salt-in-water		
	and water-in-Salt Electrolytes F_{normal} and F_{normal} F_{norm		
5	Atul Kumar H Joshi Anil Kumar	01(0.72)	3 53
	Arsenate Removal from the Groundwater Employing Maghemite		0.50
	Nanoparticles		
	Water 14 (22), 3617 (2022).		
6.	I. Ahmad and Anil Kumar	01(1.42)	
	Nucleotide(s)-mediated simultaneous N, P co-doped reduced		6.813
	graphene oxide (N, P-rGO) porous nanohybrids as a high-		
	performance electrode material for designing sustainable binder-		
	free high-voltage (2.8 V) aqueous symmetric supercapacitor and		
	electrochemical sensor.		
	Sustain. Energy Fuels, 6, 4169-4182 (2022).		
7.	S. Thareja and Anil Kumar	Q1(1.1)	
	<i>In-situ</i> wet Synthesis of N-ZnO/N-rGO Nanohybrids as Electrode		4.177
	Material for high performance supercapacitor and simultaneous		
	non-enzymatic electrochemical sensing of ascorbic acid, dopamine		
	and uric acid at their interface.		

	J. Phys. Chem. C, 125, 24837-24848 (2021).		
8.	Atul Kumar, Anil Kumar and G.D Varma Ultrafast resistive type γ -Fe ₂ O ₃ -rGO nanohybrids based humidity sensor – a respiratory monitoring tool. J. Mater. Chem. C, 9, 8002–8010 (2021).	Q1(1.608)	6.4
9.	S. Thareja and Anil Kumar Water-in-salt' electrolyte based high voltage (2.7 V) sustainable symmetric supercapacitor with superb electrochemical performance - an analysis of the role of electrolytic ions in extending the cell voltage.	Q1(1.743)	9.224
10	ACS Sustainable Chem. Eng. 9, 2338-2347 (2021).	01(0.00)	
10.	Priyanka and Anii Kumar Smart soft supramolecular hybrid hydrogels modulated by Zn^{2+} / Ag NPs with unique multifunctional properties and applications. Dalton Trans., 49, 15095–15108 (2020).	Q1(0.86)	4.569
11.	Priyanka and Anil Kumar Multistimulus-Responsive Supramolecular Hydrogels Derived by <i>in situ</i> Coating of Ag Nanoparticles on 5'-CMP-Capped β -FeOOH Binary Nanohybrids with Multifunctional Features and Applications.	Q1(0.708)	4.132
12	ACS Omega 5, 13672-13684 (2020).	01(0.97)	
12.	Remediation of Arsenic by Metal/ Metal Oxide Based Nanocomposites/ Nanohybrids: Contamination Scenario in Groundwater, Practical Challenges, and Future Perspectives. Separation and Purification Rev. 1-31, (2020); DOI: 10.1080/15422119.2020.1744649	Q1(0.97)	7.889
13.	Sahil Thareja and Anil Kumar High Electrochemical Performance of 2.5 V Aqueous Symmetric Supercapacitor based on Nitrogen doped Reduced Graphene Oxide. Energy Technol. (Wiley) 1901339 (1 to 11) (2020);(DOI: 10.1002/ente.201901339).	Q2(0.83)	4.149
14.	Anil Kumar and Priyanka Environmentally benign pH-responsive cytidine-5'-monophosphate molecule-mediated akaganeite (5'-CMP- β -FeOOH) soft supramolecular hydrogels induced by the puckering of ribose sugar with efficient loading/release capabilities. <i>New J. Chem. 43</i> , 14997-15013(2019).	Q1(0.69)	3.925
15.	Komal Gupta and Anil Kumar Zn ²⁺ /Cd ²⁺ -RNA-mediated Intense White-light-emitting Colloidal CdSe Nanostructures in Aqueous Medium – Enhanced Photophysics and Porous Morphology Induced by Conformational Change in RNA. J. Mater. Chem. C, 7, 692-708 (2019).	Q1(1.608)	8.067
16.	Anil Kumar and Komal Gupta Supramolecular Assisted RNA-Templated Fluorescing Colloidal CdSe QDs Organized in Porous Morphology in the Presence of 1,3- Diaminopropane – Study of their Multifunctional Behavior J. Phys. Chem. C 122,7898–7915 (2018).	Q1(1.1)	4.177

17.	M. Kaloti and Anil Kumar	Q1(0.708)	
	Sustainable Catalytic Activity of Ag-Coated Chitosan-Capped Fe_2O_2 Superparamagnetic Binary Nanohybrids (AgFe_2O_2@CS)		4.132
	for the Reduction of Environmentally Hazardous Dyes - A Kinetic		
	Study of the Operating Mechanism Analyzing Methyl Orange		
	Reduction $ACS Omega, 3 (2), 1529-1545 (2018)$		
18.	M. Khandelwal and Anil Kumar	Q1(0.69)	
	"Electrochemical behavior of glycine mediated N-doped reduced		3.925
	graphene oxide"		
	New J. Chem., 41, 8555-8540 (2017).		
19.	Anil Kumar and Komal Gupta	Q1(3.099)	14511
	aqueous medium - analysis of Cd^{2+} induced folding of RNA		14.511
	associated with morphological transformation (0D to 1D), change		
	in photophysics and selective Hg ²⁺ sensing.		
20	J. Mater. Chem. (A), <i>5</i> , 6146-6163 (2017).	02(0.20)	
20.	S. Firdoz and Anii Kumar ZnO nanoparticles and their acarbose-capped nanohybrids as	$\mathbf{Q}_{3}(0.39)$	2 050
	inhibitors for human salivary amylase.		2.030
	<i>IET Nanobiotechnol.</i> , 11 (3), 329-335 (2017).		
	doi: 10.1049/iet-nbt.2016.0115		
21.	M. Kaloti and Anil Kumar Synthesis of Chitosan-Mediated Silver Coated v-Fe ₂ O ₂ (Ag-v-	Q1(1.1)	4 177
	Fe ₂ O ₃ @Cs)Superparamagnetic Binary Nanohybrids for		7.1//
	Multifunctional Applications		
	J. Phys. Chem. C 120, 17627-17644 (2016).		
22.	M. Khandelwal and Anil Kumar	Q1(0.86)	
	One-pot environmental friendly amino acid mediated synthesis of		4.569
	multifunctional behavior		
	Dalton Trans., 45, 5180-5195 (2016).		
23.	M. Khandelwal and Anil Kumar	01(3.099)	
	One-step chemically controlled wet synthesis of graphene		14.511
	nanoribbons from graphene oxide for high performance		
	supercapacitor applications		
21	J. Mater. Chem. (A), $3, 22775-22506$ (2013).	01(1.04)	
24.	M. Kaloti, Anii Kumar and N.K. Navani Synthesis of glucose-mediated Ag - γ -Fe ₂ O ₂ multifunctional	Q1(1.94)	11 034
	nanocomposites in aqueous medium - a kinetic analysis of their		11.001
	catalytic activity for 4-nitrophenol reduction.		
	Green Chem. 17, 4786-4799 (2015).		
25.	Umesh Kumar Gaur, Anil Kumar and G D Varma	Q1(1.608)	
	Fe-induced morphological transformation of 1-D CuO nanochains		8.067
	ferroelectric properties.		
	J. Mater. Chem. C, <i>3</i> , 4297- 4307 (2015).		

26.	Anil Kumar, B. Singh and K. Gupta Photophysical aspects of varying $7n^{2+}$ PbSe papostructures	Q1(1.1)	4 177
	mediated by RNA leading to the formation of honeycomb-like		4.1//
	novel porous morphology.		
	J. Phys. Chem. (C), 119, 6314-6323 (2015).		
27	Anil Kumar and S. K. Gunta	01(1 94)	
27.	Supramolecular-directed novel superparamagnetic 5'-adenosine	Q ¹ (1.)4)	11.034
	monophosphate templated β -FeOOH hydrogel with enhanced		
	multi functional properties		
	Green Chem 17 2524–2537 (2015)		
28	Anil Kumar and M. Khandelwal	01(3.099)	
20.	A novel synthesis of ultra thin graphene sheets for energy storage	Q I((5 .077))	14.511
	applications using malonic acid as a reducing agent.		1 10/11
	J. Mater. Chem. (A), 2, 20345–20357 (2014).		
29.	Anil Kumar and S.K. Gupta	Q1(0.8)	
	5'-guanosine monophosphate mediated biocompatible porous		3.466
	hydrogel of β -FeOOH - Viscoelastic behavior, loading and release		
	capabilities of freeze dried gel.		
	J. Phys. Chem. (B), 118, 10543-10551 (2014).		
30.	Anil Kumar and V. Kumar	Q1	72.087
	Biotemplated inorganic nanostructures: Supramolecular directed	(18.718)	
	nanosystems of semiconductor(s)/metal(s) mediated by nucleic		
	acids and their properties.		
	Chem. Rev. (ACS), 114, 7044-7078 (2014).		
31.	Anil Kumar and M. Khandelwal	Q1(0.69)	
	Amino acid mediated functionalization and reduction of graphene		3.925
	oxide – synthesis and theformation mechanism of nitrogen-doped		
	graphene. New J. Chem., 38, 3457-3467 (2014)		
32.	U. K. Gaur, Anil Kumar and G. D. Varma	O2(0.640)	
	The synthesis of self-assembled 1-D CuO nanochains in aqueous		3.756
	medium and a study of their multifunctional features.		
	CrystEngComm (RSC), 16, 3005–3014 (2014).		
33.	Anil Kumar and S.K. Gupta	Q1(1.215)	
	Synthesis of 5'-GMP-mediated porous hydrogel containing β -		7.571
	magnetic properties		
	J. Mater. Chem. (B). <i>1</i> . 5818-5830 (2013).		
34.	Anil Kumar and B. Singh	Q1(0.86)	
	Optoelectronic properties of dual emitting RNA mediated colloidal		4.569
	PbSe nanostructures.		
	Dalton Trans., 42, 11455–11464 (2013).		
35.	Anil Kumar and S.K. Gupta	Q2(0.42)	a -
	Synthesis of adenine mediated superparamagnetic colloidal β -		2.5
	and magnetic behavior		
	J. Nanonart. Res. 15:1466. 1-16 (2013) (DOI 10 1007/s11051-		
	013-1466-z).		

36.	 Anil Kumar and B. Singh Zn²⁺ induced folding of RNA to produce honeycomb like RNA - mediated fluorescing Zn²⁺/PbSe nanostructures. J. Phys. Chem. (C), 117, 5386–5396 (2013). 	Q1(1.1)	4.177
37.	 Anil Kumar, V. Chaudhary and Vinit Kumar Synthesis of guanosine 5'-monophosphate (GMP) - mediated Ag/CdS nanohybrids – their self-assembly and optoelectronic properties. Eur. J. Inorg. Chem. 269-279 (2013). 	Q2(0.55)	2.551
38.	 Anil Kumar and B. Singh RNA templated water soluble Mg²⁺/ PbSe porous nanostructures with dual Fuorescence. RSC Advances, 2, 9079–9090 (2012). 	<mark>Q2(0.667)</mark>	4.036
39.	Anil Kumar and B. Singh Synthesis and photophysics of red emitting RNA templated PbSe nanostructures. Chem. Commun., 47 (14), 4144 - 4146 (2011).	Q1(1.513)	6.065
40.	Anil Kumar and A. Singhal Optical, photophysical and magnetic behavior of GMP-templated binary (β - Fe ₂ O ₃ /CdS) and ternary (β -Fe ₂ O ₃ /Ag/CdS) nanohybrids. J. Mater. Chem., 21, 481-496 (2011).	Not assigned	6.101 (Old)
41.	Anil Kumar and A. Singhal Optical and magnetic behavior of Ag encapsulated β -Fe ₂ O ₃ core- shell hollow Nanotubes. Mater. Chem. Phys. 131, 230-240 (2011).	Q2 (0.75)	4.778
42.	S. Firdoz, Ma Fang, XiuliYue, Zhifei Dai, Anil Kumar, Jiangbin A novel amperometric biosensor based on single walled carbon nanotubes with acetylcholine esterase for the detection of carbaryl pesticide in water. Talanta, 83, 269 - 273 (2010).	Q1 (0.98)	6.1
43.	Anil Kumar and V. Kumar Synthesis and optical properties of Guanosine 5'-monophosphate - mediated CdS nanostructures: An analysis of their structure, morphology and electronic properties. Inorg. Chem., 48, 11032-11038 (2009).	Q1 (1.12)	5.436
44.	 Anil Kumar, A. Jakhmola and V. Chaudhary Synthesis and photophysics of colloidal ZnS/PbS/ZnS nanocomposites - an analysis of dynamics of charge carriers. J. Photochem. Photobiol. A: Chem. 208, 195-202 (2009). 	Q1(0.71)	5.141
45.	Anil Kumar and V. Kumar Supramolecular – directed synthesis of RNA-mediated CdS/ZnS nanotubes. Chem. Commun., 5433-5435 (2009).	Q1(1.513)	6.065

46.	Anil Kumar and A. Singhal Synthesis of colloidal silver iron oxide nanoparticles – study of their optical and magnetic behavior	Q1(0.757)	3.953
	Nanotechnology, 20, 295606-295616 (2009).		
47.	 Anil Kumar and A. Jakhmola RNA-templated fluorescent Zn/PbS (PbS + Zn²⁺) supernanostructures. J. Phys. Chem. (C), <i>113</i>, 9553-9559 (2009). 	Q1(1.1)	4.177
48.	Anil Kumar and V. Chaudhary Time resolved emission studies of Ag-adenine-templated CdS (Ag/CdS) nanohybrids. Nanotechnology, <i>20</i> , 095703 - 095712 (2009).	Q1(0.757)	3.953
49.	 Anil Kumar and V. Kumar Self-assemblies from RNA-templated colloidal CdS nanostructures. J. Phys. Chem. (C), <i>112</i>, 3633-3640 (2008). 	Q1(1.1)	4.177
50.	Anil Kumar and A. Singhal Synthesis of colloidal β -Fe ₂ O ₃ nanostructures - influence of addition of Co ²⁺ on their morphology and magnetic behavior. Nanotechnology , <i>18</i> , 475703-475710 (2007).	Q1(0.757)	3.953
51.	 Anil Kumar and V. Chaudhary Optical and photophysical properties of Ag/CdS nanocomposites – an analysis of relaxation of charge carries. J. Photochem. Photobiol. A: Chem. 189, 272-279 (2007). 	Q2(0.63)	5.141
52.	Anil Kumar and A. Jakhmola RNA – mediated fluorescent Q-PbS nanoparticles. Langmuir (Lett.) 23, 2915-2918 (2007).	Q1(0.884)	4.331
53.	 Anil Kumar and N. Mathur Photocatalytic degradation of aniline at the interface of TiO₂ suspensions containing carbonate ions. J. Colloid Interface Sci. 300, 244-252 (2006). 	Q1(1.4)	9.965
54.	 Anil Kumar and A. Jakhmola Photophysics and charge dynamics of Q-PbS based mixed ZnS/PbS and PbS/ZnS semiconductor nanoparticles. J. Colloid Interface Sci. 297, 607-617 (2006). 	Q1(1.4)	9.965
55.	Anil Kumar Physicochemical and photochemical properties of nanoscale semiconductors - dynamics of the charge carriers. Natl. Acad. Sci. Lett., 28, 1-11 (2005). (Published as a Lead Article)	Q3 (0.2)	1.1
56.	 Anil Kumar and N. Mathur Photocatalytic oxidation of aniline using Ag⁺-loaded TiO₂ suspensions. Appl. Catal. A: Gen. 275,189-197 (2004). 	Q1(1.08)	5.5

57.	Anil Kumar and S. Mital	Q1(1.072)	
	Electronic and photocatalytic properties of purine(s)-capped Q-CdS		5.062
	nanoparticles in the presence of tryptophol.		(old)
	J. Mol. Catal. A: Chem. 219, 65-71 (2004).		
58.	Anil Kumar and S. Mital Synthesis and photophysics of 6-dimethylaminopurine-capped Q- CdS nanoparticles – astudy of its photocatalytic behavior. Int. J. Photoenerg. 6(2), 61-68 (2004).	Q2 (0.407)	2.535
59.	 Anil Kumar and S. Mital Photophysics and photocatalytic behavior of composite CdS-purine nanoparticles in the presence of certain indoles. J. Colloid Interface Sci. 265, 432-438 (2003). 	Q1(1.4)	9.965
60.	 Anil Kumar and A.K. Jain Photophysics and photocatalytic properties of Ag⁺ - doped composite (CdS-TiO₂) colloidal semiconductor. J. Photochem. Photobiol. A: Chem. 156, 207-218 (2003). 	<mark>Q2(0.68)</mark>	5.141
61.	Anil Kumar and S. MitalSynthesis and photophysics of purine-capped Q-CdSnanocrystallites.Photochem. Photobiol. Sci. 1, 737-741 (2002).	Q2 (0.74)	4.328
62.	Anil Kumar and S. MitalElectronic properties of Q-CdS clusters stabilized by adenine.J. Colloid Interface Sci. 240, 459-466 (2001).	Q1(1.4)	9.965
63.	 Anil Kumar and D.P.S. Negi Photophysics and photocatalytic properties of Cd(OH)₂ -coated Q-CdS clusters in the presence of guanine and related compounds. J. Colloid Interface Sci. 238, 310-317 (2001). 	Q1(1.4)	9.965
64.	 Anil Kumar and A. K. Jain Photophysics and photochemistry of colloidal CdS-TiO₂ coupled semiconductors - Photocatalytic oxidation of indole. J. Mol. Catal. A: Chem. 165, 267-275 (2001). 	Q1(1.072)	5.06 (old)
65.	 Anil Kumar and D.P.S. Negi Photocatalytic and photophysical behaviours of Cd(OH)₂ - coated Q-CdS in the presence of tryptophan. J. Photochem. Photobiol. A: Chem., 134, 199-207 (2000). 	Q2(0.68)	5.141
66.	Anil Kumar and A. Kumari Photocatalytic oxidative C-C bond cleavage of 1,2-ethanediol initiated by aqueous titanium dioxide dispersion - influence of Ag^+ on the catalytic activity. Res. Chem. Intermed., 25, 695-708 (1999).	Q2(0.45)	3.134
67.	 Anil Kumar and S. Kumar Colloidal CdS induced photocatalytic reaction of 2-methylindole - mechanistic analysis of oxidation of indoles. J. Phys. Org. Chem. 11, 277-282 (1998). 	Q3(0.34)	2.155

68.	 Anil Kumar, S. Kumar and D.P.S. Negi Photocatalytic oxidative C-C bond cleavage of the pyrrole ring in 3-methylindole induced by colloidal CdS particles. J. Chem. Res. (S), 1, 54-55 (1998). 	Q4(0.17)	1.4 RSC Journal (Old)
69.	 Anil Kumar and S. Kumar Catalytic effect of Ag⁺ in colloidal CdS- induced photooxidation of aniline. Chem. Lett. (8), 711-712 (1996). 	Q2(0.42)	1.715
70.	 Anil Kumar and S. Kumar Enhancement of luminescence of CdS in presence of indoles - study of CdS - sensitized reaction of indole. J. Photochem. Photobiol. A: Chem., 83, 251-256 (1994). 	Q2(0.68)	5.141
71.	 Anil Kumar and S. Kumar Photoluminescence of colloidal cadmium sulfide in the presence of aniline - study of the CdS - sensistizedphotocataytic reaction. J. Photochem. Photobiol. A: Chem. 69, 91-95 (1992). 	Q2(0.68)	5.141
72.	Anil Kumar Photoinduced processes in colloidal semiconductors – physicochemical properties and applications. Bull. Indian Soc. Rad. and Photochem. Sci. 3(1), 2-5 (1992).	-	-
73.	 Anil Kumar, A. Henglein and H. Weller Photochemistry and radiation chemistry of semiconductor colloids - preparation of colloidal PbO₂ and various electron transfer processes. J. Phys. Chem. 93, 2262-2266 (1989). 	NA	ACS Journal (Old)
74.	 Anil Kumar, E. Janata and A. Henglein Photochemistry of colloidal semiconductors - quenching of CdS fluorescence by excess positive holes. J. Phys. Chem. 92, 2587-2591 (1988). 	NA	ACS Journal (Old)
75.	A. Henglein, Anil Kumar , E. Janata and H. Weller Photochemistry and radiation chemistry of semiconductor colloids - reaction of the hydrated electron with CdS and non-linear optical effects. Chem. Phys. Lett. <i>132</i> , 133-136 (1986).	Q2(0.46)	2.719

(D). Patents: Patent granted: 04

S.No.	Title
(i).	Anil Kumar and Ikrar Ahmad
	"A One-Pot Synthesis Method of Heteroatom(s)-Doped Porous Reduced Graphene Oxide as Electrode Material by the Reduction of Graphene Oxide for the Fabrication of High Voltage Aqueous Symmetric Supercapacitor"
	(Granted - Indian Patent No. 520307 granted on 5 th March 2024.
	(Indian Patent Application no. 202211072704 dated 15th Dec. 2022.)

(ii).	Atul Kumar, Anil Kumar and G.D. Varma
	An Ultrafast Resistive Type Humidity Sensor Based on Nanohybrids
	Granted - Indian Patent No. 488912 granted on 26th Dec. 2023. (Indian Patent application no. 202011007304 dated. 20/02/2020).
(iii).	Anil Kumar and Sahil Thareja
	A Method for Synthesis of Nitrogen-Doped Reduced Graphene Oxide (N-rGO) for High Performance Supercapacitor
	Granted - Indian patent No. 391742 granted on 11 th March 2022 (Indian Patent Application No.201811031021).
(iv).	Himanshu Joshi, Anil Kumar, Ajay Kumar
	Synthesis of iron oxide nanohybrids (maghemite phase) employing raw spent wash from distillery industry as a precursor material."
	Granted - Indian Patent No. 340010 granted on 30th June 2020.

(E). Sponsored Research Projects: Handled Total Research Projects: 9 Nos.
8 Nos. as P.I. + 1 Departmental Project at S. No. 7 (Handled, contributed &defended one of the thrust areas identified in this Project as P.I.).

S.	Title	Sponsoring	Amount	Duration	Completed	Co-P.I if
No.		Agency	(in		/Ongoing	any
			Lakh)			
1	Synthesis of	CSIR, New	~17.0	July, 2014	Completed	None
	Biotemplated Colloidal	Delhi	(Receipt	to	in 2018	
	Nano-structures of		15.5)	July, 2017	(Report	
	Iron Oxide(s) -			(Note:	submitted	
	Analysis of			Last	2019)	
	Correlation between			instalment		
	their Morphologies			received in		
	and Properties			2018)		
2	Synthesis of	CSIR, New	14.2	August,	Completed	None
	Nanohybrids of	Delhi		2008-		
	Colloidal			August,		
	Semiconductor Oxides			2011 (3		
	– An Analysis of their			Years)		
	Charge Dynamics,					
	Electronic and					
	Magnetic Properties					
3	Synthesis and	DST	15.8	Nov.,	Completed	None
	Photochemistry of	(Nanomissio		2004-		
	Composite Metal	n), New		March,		
	Semiconductor	Delhi		2008		

	Nanostructured					
	Materials					
4	Analysis of Electronic	DST, New	21.0	August,	Completed	None
	Properties of	Delhi		2001-		
	Nanoclusters of			August,		
	Semiconductors –			2005		
	Development of					
	Semiconductor Based					
	Integrated					
	Photocatalytic Systems					
5	Coupled Semicond-	DST, New	14.5	June, 1995	Completed	None
	uctors as Catalysts for	Delhi		– March,		
	Initiating			2000		
	Photochemical					
	Reactions -					
	Mechanistic					
	Investigations of their					
	Photochemical and					
	Photophysical					
	Behaviour					
6	Preparation of Silver	CSIR, New	4.6	1995-1998	Completed	Dr. P. Rama-
	(III) Species and its	Delhi		(3 Years)		murthy, Univ.
	Stable Complexes-A					of Madras
	Kinetic Investigation					
	of their Redox and					
	Photoredox Reactivity					
7	Photo- and Radiation	DRS (UGC)	35.0 (a	1995-1999	Completed	Handled &
	Induced Chemical		part of			contributed
	Reactions		the funds			work in this
	(one of the identified		were			thrust area as
	thrust areas)		allotted			PI
			for this			
			work)			
8	Optimization of	UGC, New	0.25	1993	Completed	None
	photophysics of	Delhi, 1993				
	Nanosized	(Granted by				
	Semiconductor for	Univ. of				
	their Application as	Roorkee)				
	Chemical Sensors					
9	Catalytic Action of	DST, New	9.9	Feb., 1989-	Completed	None
	Semiconductor	Delhi		March,		
	Microelectrodes in			1994		
	Photionduced					
	Chemical Reactions					

(F). Book Chapters Contributed – 02:

S.No.	Title of Book Chapter with Reference
(i).	V. Kumar and Anil Kumar, RNA-Mediated CdS-Based Nanostructures Luc Ponchon (ed.), RNA Scaffolds: Methods and Protocols, Methods in Molecular
	Biology, Springer Science+Business Media, New York Ch. 16, vol. 1316, P. 195-210 (2015).
(ii).	S.P. Srivastava and Anil Kumar, Kinetics and mechanism of Ag ⁺ - catalysed
	oxidation of diols with terminal hydroxyl groups by peroxydisulphate ion, M.
	Tsutsui (ed.), Fundamental Research in Homogeneous Catalysis, Plenum Publishing
	Co., New York, Vol. 3, 373-396 (1979).

(G). Details of Ph.D. Theses Supervised: Completed (24); During last 5 years Ph.D. awarded (04).

S. No.	Name of	Title of Ph.D. Thesis				
	Student/Supervisor					
	Year of Award					
	/Submitted					
1.	Mr. Ikrar Ahmad	"In Situ Synthesis of Heteroatom(s) (N/S/P) Co-doped				
	Supervisor: Dr. Anil	Porous Reduced Graphene Oxide as Electrode				
	Kumar (2023-24)	Material(S) for Designing of BinderFree and High-				
	(Ph.D. Awarded <i>in 2024</i>)	Mass Loaded Sustainable High Performance Aqueous				
		Symmetric Supercapacitor and Electrochemical Sensor"				
2.	Dr. Atul Kumar	"Synthesis of Iron Oxide-Reduced Graphene Oxide-				
	Supervisor: Dr. G.D.	based Nanohybrids for Efficient Humidity and NO ₂ Gas				
	Varma and Dr. Anil	Sensing"				
	Kumar (2022-23)					
	(Ph.D. awarded in 2023)					
3.	Dr. Sahil Thareja	"Synthesis of N-Doped Reduced Graphene Oxide				
	Supervisor: Dr. Anil	and its Nanohybrids as Electrode Material(S)				
	Kumar 2020-2021	for Electrochemical Applications - An				
	(Ph.D. awarded in 2021)	Analysis of the Role of Different Aqueous				
		Electrolytes on their Supercapacitive				
		Performance"				
4.	Dr. Priyanka	"Synthesis of Multistimulus-Responsive Cytidine-5'-				
	Supervisor: Dr. Anil	Monophosphate Molecule- Mediated Smart				
	Kumar 2020-2021	Supramolecular Nanohybrid Hydrogels - Their				
	(Ph.D. awarded in 2020)	Multifunctional Features and Applications"				
5.	Dr. Komal Gupta	"Study of RNA-Mediated Fluorescing Colloidal CdSe				
	Supervisor: Dr. Anil	Nanostructures – Enhanced Photophysics and				
	Kumar 2019-2020	Morphological Transformation Induced By				
	(Ph.D. awarded in 2019)	Conformational Change in RNA"				

6.	Dr. Ajay Kumar	"Arsenic Removal in Groundwater using Engineered
	Supervisor: Dr.	Maghemite (γ-Fe ₂ O ₃) Nanoparticles"
	Himanshu Joshi & Dr.	
	Anil Kumar 2018-2019	
	(Ph.D. awarded in 2019)	
7.	Dr. Mandeep Kaloti	"Synthesis and Multifunctional Applications of
	Supervisor: Dr. Anil	Biomolecule-Mediated Ag-γ-Fe ₂ O ₃ Nanocomposites"
	Kumar and Dr. N. $(2010, 2010)$	
	Navani (2018-2019)	
8.	Dr. Mahima Khandelwal	"Study on Chemical Reduction of Graphene Oxide into
	Supervisor: Dr. Anil	Graphene – their Physicochemical Behavior"
	Kumar and Dr. R. Nath $(2017, 19)$	
	(2017-18)	
9.	Dr. Umesh Kumar Gaur	"Synthesis of Pure and Doped CuO Nanostructures and
	Supervisor: Dr. G.D.	their Multifunctional Properties"
	Varma and Dr. Anil	
	Kumar (2017-18)	
10.	Dr. Sudhir Kumar Gupta	"Synthesis and Physicochemical Properties of
	Supervisor: Dr. Anil	Biotemplated β-FeOOH Nanostructures"
	Kumar (2015-16)	
11.	Dr. Bhupender Singh	"Synthesis and Photophysics of RNA-Mediated
	Supervisor: Dr. Anil Kumar (2014-15)	Colloidal PbSe Nanostructures"
10	$\mathbf{Kumar} (2014-13)$	
12.	Dr. Aditi Singhal	"Synthesis of $\beta - Fe_2O_3$ Based Nanostructures - Study of their artical and Magnetia Properties"
	Supervisor: Dr. Ann Kumar (2010-2011)	of their optical and Magnetic Properties
12	De Walt Kenner	"Continuin Outining I Florence in Descention of DNA
13.	Dr. Vinit Kumar	"Synthesis, Optical and Electronic Properties of RNA – Mediated Colloidal CdS Nanostructures"
	Kumar (2010-2011)	Mediated Conordar Cus Manostructures
14.	Dr. Vidhi Chaudharv	"Synthesis of Ag/CdS Nanocomposites-An Analysis of
	Supervisor: Dr. Anil	their Optical and Photophysical Behavior"
	Kumar (2009-2010)	
15.	Dr. Anshuman Jakhmola	"Synthesis and Phtophysics of Q-PbS Based Colloidal
	Supervisor: Dr. Anil	Nanostructures"
	Kumar	
	(2007-2008)	
16.	Dr. Nupur Mathur	"Photocatalytic Action of Certain Anilines Mediated by
	Supervisor: Dr. Anil	Aqueous TiO ₂ Suspensions"
	Kumar	
	(2005-2006)	

17.	Dr. Shipra Mital	"Synthesis, Photophysics and Photocatalytic Action of
	Supervisor: Dr. Anil	Surface-Capped Q-CdS Particles"
	Kumar	
	(2003-2004)	
18.	Dr. Priyanka Gupta	"Oxidation Chemistry of Some Biologically Important
	Supervisor: Dr. R. N.	N-Heterocyclic Compounds"
	Goyal and Dr. Anil	
	Kumar	
	(2001-2002)	
19.	Dr. Vaishali	"Kinetics of Oxidation of Some Amines,
	Supervisor: Dr. Anil	Aminoalcohols and diols by Diperiodatoargentate (III)"
	Kumar	
	(2001-2002)	· · · · · · · · · · · · · · · · · · ·
20.	Dr. Arvind Kumar Jain	"Photophysics and Photocatalytic Behavior of Q-CdS-
	Supervisor: Dr. Anil	T_1O_2 in the Presence of Certain Aromatics"
	Kumar	
- 21	(2001-2002)	
21.	Dr. Devendra Pal Singh	"Photophysical and Photocatalytic Behaviors of Q-CdS
	Negi	in the Presence of Some Heterocycles"
	Supervisor: Dr. Anil	
	Kumar (2000-2001)	
22	(2000-2001)	"Vinction and Machaniam of Ovidation of Cartain
22.	Supervisor: Dr Anil	Amine Acids by Bis (periodete) Argentate (III)"
	Kumar and Dr RD	Annuo Acido by Dis (periodato) Argentate (iii)
	Kaushik (1998-1999)	
23.	Dr. Sanjay Kumar	"Photoluminescence of Colloidal Cadmium Sulphide
	Supervisor: Dr. Anil	Particles in the Presence of Certain Anilines and Indoles
	Kumar	- Study of CdS Sensitized Photocatalytic Reactions"
	(1995-1996)	
24.	Dr. Ashok Panwar	"Preparation of Tetrahydroxoargentate (III) ion and
	Supervisor: Dr. Anil	Study of its Reactions with Certain Aromatic Amines"
	Kumar	
	(1993-1994)	

(H). Conferences: Proceedings 03 (S. Nos. 43, 53 &77) + 88 (Abstracted)/Invited Talks/Symp./Meetings. Total = 97; Last 03 Years -11 Nos.

S.	Author(s)	Title	Nar	me o	of	Page	Date &	Conference
No.			Conference/		No.	Year	Venue	
			Meeting		g	(Other		
						Details)		
1.	Anil	Development of	10tl	h	Annual	183	May 17-	Osaka, Japan
	Kumar	Sustainable	Wo	rld	Congress		19,	
		Supercapacitor for			C		-	

	(Invited	Superb	of Nano-science		<mark>2023</mark>	
	Speech)	Electrochemical	&Technology -			
		Performance	2023 (Nano			
			S&T-2023)			
2.	Anil	Designing of	Nano Meet 2023	-	March	IIT Roorkee,
	Kumar	Certain Sustainable	(Alumni Meet)		18,	Roorkee
	(Invited	Functional			<mark>2023</mark>	
	Speech as a	Nanostructures				
	Guest of					
	Honor)					
3.	<u>Ikrar</u>	AMP-Mediated	35 th International	PP-8; p.	Dec. 04-	IIT Roorkee,
	Ahmad and	Heteroatom(s) co-	Conf. on	49	06,	Roorkee
	Anil	doped Porous	Nanomaterials		2023	
	Kumar*	Reduced Graphene	and Nanotech-			
		Oxide (N/P-rGO)	nology			
		as Electrode				
		Material for				
		Electrochemical				
		Sensors				
4.	Ikrar	Adenosine	3rd International	Poster	August	Melbourne,
	Ahmad and	Monophosphate-	Conference on	Presentat	24-26,	Australia
	Anil	Mediated N, P co-	Nanomaterials	ion	2023	
	Kumar*	doped Porous	and			
		Reduced Graphene	Nanotechnology,			
		oxide as Electrode				
		Material for High				
		Performance				
		Aqueous				
		Symmetric				
		Supercapacitor				
5.	S. Thareja	One Pot In-situ Wet	International	A-2165	June 26-	SUNTEC,
	and Anil	Chemical Synthesis	Conference on	(W)	30,	Singapore
	Kumar*	of	Materials for		2023	
		Mn3O4/nitrogen-	Advanced			
		doped Reduced	Technologies			
		Graphene Oxide	(ICMAT2023)			
		(N-rGO)				
		Nanohybrids for				
		High-voltage				
		Sustainable				
		Aqueous				
		Symmetric				
		Supercapacitor				
		Devices				

6.	<u>Ikrar</u>	Synthesis of	35 th International	-	March	Berlin,
	<u>Ahmad</u> and	Cytidine	Conf. on		25-26,	Germany
	Anil	Monophosphate-	Nanomaterials		2022	Held
	Kumar	Assisted Reduced	and Nanotech-			Virtually
		Graphene Oxide	nology			5
		(N, P-rGO) as	85			
		for Supersonagitor				
		Applications				
7.	Anil	Nanotechnology	National Webinar	Invited	26 th Oct	GGNK
,.	Kumar	Revolutionizing	on Advancement	Talk as a	2021	College
	ixumai	Societal	in Modern	Resource	2021	Ludhiana
		Applications	Experimental	Person		Held
			Chemistry	1 013011		Virtually
0	A	Echnication of	International	Invited	20^{th} to	Calcotion
ð.	AIIII Kumar	Sustainable	Conformer	Tallr	29 10 20 th	
	Kumar	Advanced Greener	Conference on	Так	Sunt	Univ., Noida
		Nanomaterials	Advanced Matariala fam		Sept.,	Heid Winter 11-
		Employing Wet	Materials for		2021	virtually
		Chemical Approach	Next Generation			
	9		Applications	0.1	10.17	
9.	<u>S.</u>	One-pot Greener	International	Oral	13-17	IIT (BHU)
	Thareja and	doped Reduced	Conference on		July,	Held
	Anil	Graphene Oxide for	Advanced		2021	Virtually
	Kumar	High Performance	Materials for			
		Symmetric	Better Tomorrow			
		Supercapacitor - An				
		Analysis of the				
		Role of Different				
		Electrolytes for				
		Achieving High				
		Potential Window				
10	S. Thareja	Synergistic Effect	International	Oral	14.16	Depart. of
	and Anil	of Electrode	Conference on		14-10	Chemistry,
	Kumar	Material and	Recent Advances		July,	JC Bose
		Electrolyte for	in Chemical		2021.	University of
		Developing High	Sciences			Science and
		A queous	(ICRACS2021)			Technol
		Symmetric				YMCA.
		Supercapacitor				Faridabad
11	A. Kumar	Reduced graphene	American	Poster	March	Held
	G.D.	oxide/Magnetite	Physical Society		15–19.	Virtuallv
	Varma, and	$(rGO-Fe_3O_4)$	(APS) March		2021	
	Anil	nanohybrids based	Meeting 2021			
	Kumar	selective room	2021			
		temperature H_2S				
		gas sensor				

12	Anil Kumar Sahil Thareja and Anil Kumar	Greener Protocols for the Fabrication of Biotemplated Nanostructures - their Multifunctional Applications High Performance Symmetric Supercapacitor based on Nitrogen doped Reduced Graphene Oxide	Continuing Education Programme on 'Environment and Nanosafety' DAE-BRNS sponsored conference on Electrochemistry in Industry, Health and Environment- 2020	Invited Talk PP-161	17th to 19th Feb 2020 21-25 Jan., 2020	DRDO, Delhi BARC, Mumbai
14	Anil Kumar	Environmentally Benign Greener Nanostructures for Certain Energy Applications	National Academies Lecture Workshop on " Materials Engineering for Sustainable Environment and Energy"	Invited Talk	10 th Jan., 2020	CSIR-CSIO, Chandigarh
15	Anil Kumar	Engineering of Nanostructured Materials for Some Light - Induced Energy Applications	National Academies lecture Workshop on " Materials Engineering for Sustainable Environment and Energy"	Invited Talk	9 ^m Jan., 2020	CSIR-CSIO, Chandigarh
16	<u>S. Thareja</u> and Anil Kumar	Synthesis and characterization of nitrogen doped reduced graphene oxide as high- performance binder-free supercapacitor electrode material	International Conference on Supercapacitor, Energy Storage & Application (ICSEA 2019)	Poster	8-10 March, 2019	C-MET, Thrissur, Kerala
17	A. Kumar,G.D . Varma <u>.</u> and Anil Kumar	Selective Enhanced H ₂ S Sensing Using rGO-Fe ₃ O ₄ Nanohybrids	3 rd International Conf. on Condensed Matter & Amp; Applied Physics- 2019	Poster	Oct. 14- 15, 2019	Govt. Engineering College Bikaner, Rajasthan
18	Anil Kumar	Photophysics of Nucleic acid- Mediated	NationalConf.onAdvancedFunctional	IL-7	20-21 Nov., 2019	Jamia Milia Islamia, New Delhi

		Semiconducting	Materials			
		Nanostructures	(NCAFM-2019)			
19	Anil	Photophysics of	National	-	20-21	Univ. of
	Kumar	Nucleic acid-	Workshop on		June,	Madras,
		Mediated	Photouminesc-		2019	India
		Semiconducting	ence and			
		Nanostructures	functional			
			Materials			
			(NWPFM-2019)			
20	<u>Priyanka</u>	Environmental	Internat. Conf. on	Abst.	Dec. 14-	Univ. of
	and Anil	Applications of	Advanced	173	15,	Petroleum
	Kumar	Nucleotide	Mater., Energy		2018	and Energy
		Molecule(s)	and			Studies,
		Coated Greener	Environmental			Dehradun,
		Hydrogels	Sustainability			India
21.	<u>Priyanka</u>	Synthesis and	12th Int. Conf. on	Abstract	Dec. 6-	LHC, IIT
	and Anil	Analysis of	Complex Fluids	48	9, 2018	Roorkee,
	Kumar	Physiochemical	and Soft Matter	(Poster		India
		Properties of	Sponsored by	No. 7)		
		Biomolecule-	RSC & ACS			
		Mediated Soft				
22	A Vuman	Hydrogels	Watan Sagurity	151	2rd to 5th	Nairahi
22.	<u>A. Kullial</u> , H. Joshi	All approach of	and Climate	131	5 10 5 Dec	Nanooi, Kanya
	and Anil	industry waste in	Change		2018	Kenya
	Kumar	the development of	Conference		2010	
	ixumar	maghemite	(International			
		functionalized	Network on			
		nanostructures for	Sustainable			
		arsenic removal'	Water			
			Management in			
			Developing			
			Countries			
			(SWINDON))			
23.	<u>A. Kumar,</u>	Exploring the scope	7th Int. Congress	ISBN	1^{st} to 6^{th}	Beijing,
	H. Joshi,	of nanoparticles for	on Arsenic in the	9781138	July,	China
	and Anil	arsenic removal in	Environment	4860-96	2018	
	Kumar	groundwater	(As2018)	(In	(CRC	
			Organized by Int.	Press)	Press	
			Soc. of		Publis-	
			Groundwater for		her)	
			Sustainable			
			Development			

24.	Anil	Biomolecules	National Conf.	1	January	Dept. of
	Kumar	Mediated Greener	on Chemical		18-21,	Chemistry,
	(Keynote	Nanostructures/	Sciences: An		2018	Modern
	Speaker –	Nanohybrids: Study	Interdiscipli-nary			College of
	Inaugural	of their	Approach (CSIA-			Arts, Science
	Lecture)	Multifunctional	2018)			and
	,	Features	,			Commerce,
						Pune
						(Sponsored
						by Dept. of
						Biotechnol-
						ogy)
25.	Komal	Multifunctional	ACS on Campus	-	07^{th}	IIT Roorkee,
	<u>Gupta</u> and	Features of RNA	IIT Roorkee		Feb.,	Roorkee
	Anil	Mediated CdSe			2018	
	Kumar	Nanostructures				
26.	<u>Komal</u>	Mechanistic	Trombay	90	03 rd -	BARC,
	<u>Gupta</u> and	Analysis of	Symposium on		07^{th}	Mumbai
	Anil	Fluorescence	Radiation &		Jan.,	
	Kumar	Behavior of RNA-	Photochemistry		2018	
		Mediated Colloidal	(TSRP-2018)			
		CdSe				
		Nanostructures for				
		Hg ²⁺ Sensing				
27.	<u>A. Kumar</u> ,	Assessing the	7 th International	130	11 th -	NIH and
	H. Joshi,	maghemite (γ-	Groundwater	(ISBN:	13 th	CGWB at
	and Anil	Fe_2O_3)	Conference-	978-93-	Dec.	New Delhi,
	Kumar	nanoparticles in	Groundwater	81891-	2017	India from
		As(V) removal	Vision 2030	42-1)		
		using laboratory				
		scale batch and				
		column				
		experiments				
28.	<u>Komal</u>	RNA-mediated	International	152	30 Nov.	Dept. of
	<u>Gupta</u> and	Fluorescent Water	Conf. on		– 2nd	Metallurgi-
	Anil	Soluble Colloidal	Advances in		Dec.,	cal&
	Kumar	CdSe	Materials &		2017	Materials
		Nanostructures for	Processing:			Engg., IIT
		Environmental	Challenges &			Roorkee,
		Applications	Opportunities			India
			(AMPCO-2017)			
29.	<u>Komal</u>	Photophysical	International	102 (PP-	March	Dept. of
	<u>Gupta</u> ,	Behavior Of	Conf. on	52)	4-7,	Chemistry,
	Bhupender	Zn ² "/PbSe	Advanced		2016	IIT Roorkee,
	Singhand	Nanostructures in	Materials for			Roorkee

	Anil	the presence of Nile	Energy,			
	Kumar	Blue:	Environment and			
		An Analysis of its	Health (ICAM-			
		orption Behavior	2016)			
30.	Anil	Development of	9 th Natl. Seminar	16	Feb. 09-	Dept. of
	Kumar	Advanced	on New	(Invited	10,	Chemistry,
		Nanomaterials	Paradigm in	Lecture-	2017	Punjabi
		using Wet	Chemical	08)		University,
		Chemical Approach	Sciences and			Patiala
			Analytical			
			Perspectives			
31.	Anil	Synthesis and	Prof. R.C. Paul	Invited	Feb. 24-	Dept. of
	Kumar	multifunctional	Natl. Symposium	Lecture	25,2017	Chemistry,
		behavior of some	on Current			Chandigarh
		iron oxide and	Advances in			University,
		carbon-based	Chemical			Chandigarh
		greener	Sciences			
		nanostructures				
32.	<u>M. Kaloti</u>	Synthesis and	Int. Conf. on	317	Nov. 4-	Centre of
	and Anil	multifunctional	Advances in	(Poster -	5, 2016	Nanosci. &
	Kumar	applications of	Nanomaterials	308)		Nanotech.,
		chitosan mediated	and Nanotechnol-			Jamia Millia
		maghemite	ogy (ICANN-			Islamia,
		nanohybrids	2016)			New Delhi
33.	<u>M.</u>	Synthesis of	International	70	March	Dept. of
	<u>Khandel-</u>	graphene by	Conf. on	(YRP-3)	4-7,	Chemistry,
	wal and	chemical reduction	Advanced		2016	IIT Roorkee,
	Anil	of graphene oxide –	Materials for			Roorkee
	Kumar	Study of their	Energy,			
		energy storage	Environment and			
		applications	Health (ICAM-			
			2016)			
34.	<u>M.Kaloti,</u>	Synthesis of	International	127 (PP-	March	Dept. of
	Anil	glucose-mediated	Conf. on	52)	4-7,	Chemistry,
	Kumar and	Ag-γ-Fe ₂ O ₃ multif-	Advanced		2016	IIT Roorkee,
	N. Navani	unctional	Materials for			Roorkee
		nanocomposites – a	Energy,			
		study of their	Environment and			
		catalytic and	Health (ICAM-			
		antibacterial studies	2016)			
35.	<u>M.</u>	Amino acid	Int. Conf. on	100	1-4	Univ. of
	<u>Khandel-</u>	mediated synthesis	Materials Science	(Biom-	March,	Delhi, Delhi,

	waland	of N-doped	& Technology,	ater.	2016	India
	Anil	graphene and its	Conf. Centre	Biodev./		
	Kumar	supercapacitor		poster)		
		applications				
36.	<u>M.</u>	Environmental	Second	28	Feb. 25-	Thapar
	<u>Khandel-</u>	friendly synthesis	Conference on	(OP-9)	27,	University,
	wal and	of N-doped	Microscopy in		2016	Patiala
	Anil	graphene-silver	Materials Science			
	Kumar	nanocomposites				
		with enhanced				
		ontical and				
		electrochemical				
		behaviour				
27	A	Negetien land	Class t Tanan	Et	I	DDD
57.		Nanotechnology	Short Term	Experi	June 01, 2015	
	Kumar	contributing to the	Course on	Taik	2015	Ambedkar
		development of	Advance			National
		advanced materials	Materials and			Institute of
			Characterization			Technology,
			Techniques			Jalandhar -
						144011,
						Punjab
38.	<u>M.</u>	Malonic acid	5^{th} Int. Conf. on	1167	May 2-	"Krishi
	<u>Khandel-</u>	mediated synthesis	Recent Trends		3, 2015	Sanskriti" at
	wal and	of one atom thick	in Applied		(J. Basic	Jawaharlal
	Anil	graphene sheets and	Physical		Appl.	Nehru
	Kumar	its supercapacitor	Chemical		Engg.	University,
		applications in	Sciences,		Res.	New Delhi,
		Mathematical/Statis			2(13)	
		tical and			2015)	
		Environmental			(Poster)	
20	A	Chamical	EMN Cuenerhou	$2(\Lambda, 02)$	0.2 rd	Cuanazhau
39.		Strategies for	Elvin Guangzhou	5 (A-02)	$05 - 0c^{\text{th}}$	Guangzhou, China
	Kumar	Synthesis of Green	Energy Materials		00 Dec	Ciiiia
		Nanomaterials –	Energy Materials		Dec.,	
		Chemistry and	and Nanotechno-		2015	
		Future Scope of	logy (Delivered			
		Iron Oxide/	an invited Talk)			
		Oxyhydox1de				
		Based Nanostructures				
40.	Anil	Rheological	Int. Conf.	Presen-	October	Indian
	Kumar	Properties of	Biomater. 2014	ted	27-30	Institute of
	and Sudhir	Biocompatible	on Polymeric	poster	2014	Technology
	K Gunta	Supernaramagnetic	Biomater.			Delhi
	<u> Supta</u>	5'-Guanosine	Bioengg.			(India),

		Monophosphate Mediated Porous Hydrogel of β-FeOOH – Loading, and Release Capabilities of Its Freeze-Dried Gel	&Biodiagnostics			ENEA Rome (Italy) and National Research Council (Italy)
41.	<u>Sudhir K.</u> <u>Gupta</u> and Anil Kumar	ViscoelasticPropertiesofSuperparamagnetic $5'$ -Adenosine5'-AdenosineMonophosphateMediatedPorous β -FeOOH γ Hydrogel $-$ itsLoading,andReleaseCapabilities	9 th India Japan Bilateral Conference (BICON-2014) on Advanced Material Sci. Engg.	(Won best poster award by S.K. Gupta)	Oct. 12- 13,2014	Biyani Group of Colleges, Jaipur, Rajasthan (India) and JAIST Japan
42.	Anil Kumar (Plenary Lecture 2)	"Synthesis of Advanced Materials following Wet Chemical Route(s)"	9 th India Japan Bilateral Conference (BICON-2014) on Adv. Mater. Sci. Engg.	25-27	Oct. 12- 13,2014	Biyani Group of Colleges, Jaipur, Rajasthan (India) and JAIST Japan
43.	Anil Kumar (Invited Lecture)	Current Advancements in Nanoscience Present Status and Future Prospects of Sustainable Green Technology	Green Nanotechno-logy	Publis- hed in Proce- edings	June 05- 06, 2014	Chandigarh University, Chandigarh
44.	Anil Kumar and S.K. Gupta	Synthesis, Characterization and Magnetic Properties of 5'- Guanosine Monophosphate Mediated Porous Hydrogel containing β- FeOOH	National Conference on Nanotechnology and Renewable Energy-2014 (NCNRE-2014)	241	April 28-29, 2014	Department of Applied Sciences and Humanities, Jamia Millia Islamia, New Delhi

		Nanostructures				
45.	Anil Kumar	Chemical Approach to Design New Material	Natl. Conf. Science Colloquium (Emerging Trends in Basic & Applied Sciences)	2 (Invited Talk)	6- 7 th March, 2014	DAV College Jalandhar
46.	Anil Kumar	Chemical Sciences Contributing to the Development of New Materials	Nat. Conf. on Recent Trends in Chemical Sciences	8 (IT-5)	25-26, Feb., 2014	Dept. of Chemistry, Guru Jambhesh- war Univ. of Sci & Tech., Hisar
47.	Anil Kumar	Emphasis on Interdisciplinary Science & Technological Shift, Contributing to the Development of New Materials	2 nd Int. Conf. and Exhibition on Materials Science and Engineering	Honor- able Guest Lecture	07 th -9 th October 2013 (07 th Oct.)	Las Vegas, USA
48.	Anil Kumar (Invited Lecture)	'Biotemplated Semiconductor/ Metal Nanostructures - their Characteristic Features and Future Prospects'	2 nd International Conference and Exhibition on Materials Science and Engineering	Invited Talk	08 th Oct. 2013	Las Vegas, USA
49.	Anil Kumar	Supramolecular Directed Assemblies of Biotemplated Metal / Semiconductor Nanohybrids	5 th Szeged International Workshop on Advances in Nanoscience (SIWAN5)	81-82	24-27 Oct., 2012	Szeged, Hungary,
50.	Kanchan Yadav, N. Bogdan, R. Naccac- he, B. F. Zhang, E. M. Rodriguez,	$\begin{array}{llllllllllllllllllllllllllllllllllll$	'World Congress on Biotechnolo- gy	Won 02 nd Best Poster Presentat ion Prize	04 th to 06 th May 2012	Leonia Int. Convention Centre, Hyderabad

	Anil	Imaging and				
	Kumar and	Treatment'				
	J. A.					
	Capobianco					
51.	Anil	Development of	7 th Natl. Symp. &	39 (IL4)	Nov. 24	Dept. of
	Kumar	Colloidal	Conf. on Solid		- 26,	Chemistry,
	(Invited	Nanomaterials	State Chem. And		2011	Faculty of
	Lecture)		Allied Areas			Natural Sci.
			(ISCAS -2011)			Jamia Millia
						Islamia, New
						Delhi
52.	<u>Linu, M.</u>	Synthesis of γ –	Third Intl. Conf.	-	August	Cochin Nano
	and Anil	Fe ₂ O ₃ Based	on Frontiers in		2011	- 2011
	Kumar	Nanostructures –	Nanoscience and			
		Study of their	Technology			
		Optical and				
		Magnetic				
		Properties				
53.	Anil	Optical and	3 rd Asia Pacific	206 -	Sept. 14	Lonavala,
	Kumar	Electronic	Symp. On Rad.	209	-17,	India
	(Invited	Properties of	Chem. (APSRC-	(Invited	2010	
	Lecture)	Colloidal	2010) and DAR	Talk		
		Semiconductor	BRNS 10 th	ITPC-		
		Nanohybrids	Biennial	13)		
			TrombaySymp.	(Publis-		
			Rad.	hed in		
			&Photochem.	Proc.)		
			(TSRP-2010)			
54.	Anil	Photocatalytic	International	'Cataly-	Nov. 03	Allahabad
	Kumar	Applications of	Symposium on	sis in	- 04,	Agricultural
	(Chaired a	Some	Ostwald's 100	Green	2009	Institute,
	Session on	Semiconductor	Years of	Chemi-		Allahabad
	<i>'Applicati-</i>	Nanosystems.	Catalysis in	stry /		
	ons of		Chemical	Nano-		
	Catalysts in		Research	materi-		
	Industry)			als'		
55.	Anil	Biomolecule(s) –	Indo-French	87 in	October	Ansal
	Kumar	Templated	Workshop cum	(Int.	12-16,	Institue of
	(Plenary	Colloidal Metal	International	Conf. on	2009	Technology,
	Lecture)	/Semiconductor	Conference on	16 th		Gurgaon
		Nanohybrids,	Nanosci.	Oct.)		
			&Nanotechnol.			
56.	Anil	Morphological	Intl. Conf. on	77	Dec. 11-	IIT Roorkee,
	Kumar and	Changes in	Nanomaterials		13,	India
	V. Kumar	Nucleotide-Capped	and Devices		2008	

		CdS Nanostructures	Processing and			
			Applications			
57	Anil	Flaatronia	(NADPA 2008)	77	Dec. 11	IIT Poorkaa
57.	Allii Kumar and	Properties of	Nanomaterials	//	13	III KOOIkee, India
		Riotemplated O	and Devices		2008	muia
	<u>v.</u> Chaudha	CdS Ag	Brocessing and		2008	
	<u>Chauana-</u>	Nanocomposites	Applications			
		Nanocomposites,	(NADPA 2008)			
58	Anil	Synthesis of	Intl Conf on	76	Dec 11-	IIT Roorkee
50.	Kumar	FeaOa/A g Core	Nanomaterials	/0	13	India
	and Aditi	Shell	and Devices		2008	mara
	Singhal	Nanocomposites	Processing and		2000	
	Singnui	Nanocomposites,	Applications			
			$(N \Delta D P \Delta 2008)$			
59	Anil	Nanoscience and	National	Chaired	Nov 8	HNB
57.	Kumar	Nanotechnology –	Convention of	a Techn-	& 9	Garhwal
	(Invited	Potential &	Chemistry	ical	2008	University
	Lecture)	Challenges	Teachers (NCCT	Session	2000	Srinagar
	Leeta c)	Chanonges	-2008)	50551011		Simugui
			2000)			
60.	Anil	Synthesis and	International	A105	Feb. 27-	Indira
	Kumar, A.	photophysics of	Conf. on		29,	Gandhi
	Jakhmola	ZnS/PbS/ZnS	Nanoscience and		2008	Centre for
	and <u><i>V</i>.</u>	quantum dot	Technology			Atomic
	Chaudha-	quantum well – An	(ICONSAT-			Research,
	ry	analysis of	2008)			DAE,
		dynamics of charge				Kalpakkam,
		carriers				India
61.	Anil	Photochemistry of	National	IT-2	Jan. 29	Univ. of
	Kumar	Some Nanocolloids	Symposium on		- 31	Madras,
	(Invited		Radiation and		(2007)	Chennai
	Lecture)		Photochemi-stry			
			(NSRP-2007)			
62.	Anil	Photochemistry of	National	IT-2	January	Univ. of
	Kumar	Surface Modified	Symposium on		29 - 31	Madras,
		Semiconductor	Kadiation and		(2007)	Chennai
		Nanocomposites	Photochemistry			
(2	A	Dhataata 1. t	(NSKP-2007)	01	Man 1	A 1's
63.	Anii Kumen en 1	Photocatalytic	Inti- Meeting of	Dragantat	March	Agadır,
	N Mether	Applingent the	Photoconem-1stry,	rresentat	29-31,	Morocco
	IN. Mathur	Anilines at the	Photocatalysis	10n	2006	
		Intertace of Surface	and their			

		Modified TiO ₂ –	Environment-al			
		Influence of	Applications			
		Loading of	(Photocat 2006)			
		Carbonate Ions				
64.	Anil	Applications of	Workshop on	Invited	June 25,	Poona Univ.,
	Kumar	Pulse Radiolysis to	Pulse Radiolysis	Presen-	2005.	Pune
	(Invited	An understanding	and its	tation		
	Lecture)	of	Applications			
		Semiconductor				
		Based				
		Photochemical				
		Systems				
65.	Anil	Photooxidation of	UGC sponsored	25	Oct. 18,	IIT Roorkee,
	Kumar and	Aniline at the	symposium under		2003	Roorkee,
	<u>N. Mathur</u>	Interface of TiO_2	DRS			
		Suspensions		2.1	0 10	
66.	Anil V1	Photochemistry of	UGC sponsored	24	$\begin{array}{c} \text{Oct. 18,} \\ \text{2002} \end{array}$	III Roorkee,
	Kumar and	0- Dimathulaminanuri	symposium under		2003	коогкее,
	<u>S. Willar</u>	Dimetriyianinopuri	DKS			
		Cadmium Sulfide				
		Nanonarticles				
		ranoparticles				
<i>i</i> -						
67.	Anil	Photochemistry of	National	IT-8	March	IIT, Kanpur
67.	Anil Kumar	Photochemistry of Surface Modified	National Symposium on	IT-8	March 3-5,	IIT, Kanpur
67.	Anil Kumar	Photochemistry of Surface Modified Semiconductor	National Symposium on Radiation and	IT-8	March 3-5, 2003	IIT, Kanpur
67.	Anil Kumar	Photochemistry of Surface Modified Semiconductor Nanocomposites	National Symposium on Radiation and Photochemistry (NSRP-2003)	IT-8	March 3-5, 2003	IIT, Kanpur
67.	Anil Kumar Anil	Photochemistry of Surface Modified Semiconductor Nanocomposites	National Symposium on Radiation and Photochemistry (NSRP-2003) 7 th Intl. Conf. on	IT-8 Oral	March 3-5, 2003	IIT, Kanpur
67. 68.	Anil Kumar Anil Kumar	Photochemistry of Surface Modified Semiconductor Nanocomposites Photophysical and Photochemical	National Symposium on Radiation and Photochemistry (NSRP-2003) 7 th Intl. Conf. on Solar Energy and	IT-8 Oral Presentat	March 3-5, 2003 23-28 th Feb.	IIT, Kanpur Luxor Egypt
67. 68.	Anil Kumar Anil Kumar	Photochemistry of Surface Modified Semiconductor Nanocomposites Photophysical and Photochemical Aspects of	National Symposium on Radiation and Photochemistry (NSRP-2003) 7 th Intl. Conf. on Solar Energy and Applied	IT-8 Oral Presentat ion made	March 3-5, 2003 23-28 th Feb., 2003	IIT, Kanpur Luxor Egypt
67. 68.	Anil Kumar Anil Kumar	PhotochemistryofSurfaceModifiedSemiconductorNanocompositesPhotophysicalandPhotochemicalAspectsofNanoparticlesof	National Symposium on Radiation and Photochemistry (NSRP-2003) 7 th Intl. Conf. on Solar Energy and Applied Photochemis-try	IT-8 Oral Presentat ion made under	March 3-5, 2003 23-28 th Feb., 2003	IIT, Kanpur Luxor Egypt
67. 68.	Anil Kumar Anil Kumar	PhotochemistryofSurfaceModifiedSemiconductorNanocompositesNanocompositesPhotophysicalPhotophysicalandPhotochemicalAspectsAspectsofNanoparticlesofSemiconductors –	National Symposium on Radiation and Photochemistry (NSRP-2003) 7 th Intl. Conf. on Solar Energy and Applied Photochemis-try (Solar'03)	IT-8 Oral Presentat ion made under Special	March 3-5, 2003 23-28 th Feb., 2003	IIT, Kanpur Luxor Egypt
67.	Anil Kumar Anil Kumar	PhotochemistryofSurfaceModifiedSemiconductorNanocompositesPhotophysicalandPhotochemicalAspectsofNanoparticlesofSemiconductorsInvestigationson	National Symposium on Radiation and Photochemistry (NSRP-2003) 7 th Intl. Conf. on Solar Energy and Applied Photochemis-try (Solar'03) combined with	IT-8 Oral Presentat ion made under Special Session	March 3-5, 2003 23-28 th Feb., 2003	IIT, Kanpur Luxor Egypt
67.	Anil Kumar Anil Kumar	PhotochemistryofSurfaceModifiedSemiconductorNanocompositesNanocompositesImage: Complexity of the second se	National Symposium on Radiation and Photochemistry (NSRP-2003) 7 th Intl. Conf. on Solar Energy and Applied Photochemis-try (Solar'03) combined with 4 th Intl.	IT-8 Oral Presentat ion made under Special Session on	March 3-5, 2003 23-28 th Feb., 2003	IIT, Kanpur Luxor Egypt
67.	Anil Kumar Anil Kumar	Photochemistry of Surface Modified Semiconductor Nanocomposites Photophysical and Photochemical Aspects of Nanoparticles of Semiconductors – Investigations on Q-CdS	National Symposium on Radiation and Photochemistry (NSRP-2003) 7 th Intl. Conf. on Solar Energy and Applied Photochemis-try (Solar'03) combined with 4 th Intl. Workshop on	IT-8 Oral Presentat ion made under Special Session on Nano-	March 3-5, 2003 23-28 th Feb., 2003	IIT, Kanpur Luxor Egypt
67.	Anil Kumar Anil Kumar	Photochemistry of Surface Modified Semiconductor Nanocomposites Photophysical and Photochemical Aspects of Nanoparticles of Semiconductors – Investigations on Q-CdS	National Symposium on Radiation and Photochemistry (NSRP-2003) 7 th Intl. Conf. on Solar Energy and Applied Photochemis-try (Solar'03) combined with 4 th Intl. Workshop on Environ.	IT-8 Oral Presentat ion made under Special Session on Nano- sci-	March 3-5, 2003 23-28 th Feb., 2003	IIT, Kanpur Luxor Egypt
67.	Anil Kumar Anil Kumar	Photochemistry of Surface Modified Semiconductor Nanocomposites Photophysical and Photochemical Aspects of Nanoparticles of Semiconductors – Investigations on Q-CdS	National Symposium on Radiation and Photochemistry (NSRP-2003) 7 th Intl. Conf. on Solar Energy and Applied Photochemis-try (Solar'03) combined with 4 th Intl. Workshop on Environ. Photochemistry	IT-8 Oral Presentat ion made under Special Session on Nano- sci- &Nanot-	March 3-5, 2003 23-28 th Feb., 2003	IIT, Kanpur Luxor Egypt
67.	Anil Kumar Anil Kumar	Photochemistry of Surface Modified Semiconductor Nanocomposites Photophysical and Photochemical Aspects of Nanoparticles of Semiconductors – Investigations on Q-CdS	National Symposium on Radiation and Photochemistry (NSRP-2003) 7 th Intl. Conf. on Solar Energy and Applied Photochemis-try (Solar'03) combined with 4 th Intl. Workshop on Environ. Photochemistry (Enpho '03)	IT-8 Oral Presentat ion made under Special Session on Nano- sci- &Nanot- echnol-	March 3-5, 2003 23-28 th Feb., 2003	IIT, Kanpur Luxor Egypt
67.	Anil Kumar Anil Kumar	Photochemistry of Surface Modified Semiconductor Nanocomposites Photophysical and Photochemical Aspects of Nanoparticles of Semiconductors – Investigations on Q-CdS	National Symposium on Radiation and Photochemistry (NSRP-2003) 7 th Intl. Conf. on Solar Energy and Applied Photochemis-try (Solar'03) combined with 4 th Intl. Workshop on Environ. Photochemistry (Enpho '03)	IT-8 Oral Presentat ion made under Special Session on Nano- sci- &Nanot- echnol- ogy	March 3-5, 2003 23-28 th Feb., 2003	IIT, Kanpur Luxor Egypt
67. 68. 69.	Anil Kumar Anil Kumar Anil	PhotochemistryofSurfaceModifiedSemiconductorNanocompositesNanocompositesandPhotophysicalandPhotochemicalAspectsofAspectsofsemiconductors –InvestigationsonQ-CdSPhotophysicsand	National Symposium on Radiation and Photochemistry (NSRP-2003) 7 th Intl. Conf. on Solar Energy and Applied Photochemis-try (Solar'03) combined with 4 th Intl. Workshop on Environ. Photochemistry (Enpho '03) Workshop on P. division	IT-8 Oral Presentat ion made under Special Session on Nano- sci- &Nanot- echnol- ogy 27	March 3-5, 2003 23-28 th Feb., 2003	IIT, Kanpur Luxor Egypt Pune
67. 68. 69.	Anil Kumar Anil Kumar Anil Kumar and	Photochemistry of Surface Modified Semiconductor Nanocomposites Photophysical and Photochemical Aspects of Nanoparticles of Semiconductors – Investigations on Q-CdS Photophysics and Photocatalytic	National Symposium on Radiation and Photochemistry (NSRP-2003) 7 th Intl. Conf. on Solar Energy and Applied Photochemis-try (Solar'03) combined with 4 th Intl. Workshop on Environ. Photochemistry (Enpho '03) Workshop on Radiation and	IT-8 Oral Presentat ion made under Special Session on Nano- sci- &Nanot- echnol- ogy 27	March 3-5, 2003 23-28 th Feb., 2003 January 4-5, 2002	IIT, Kanpur Luxor Egypt Pune University
67. 68. 69.	Anil Kumar Anil Kumar Anil Kumar and Arvind	Photochemistry of Surface Modified Semiconductor Nanocomposites Photophysical and Photochemical Aspects of Nanoparticles of Semiconductors – Investigations on Q-CdS Photophysics and Photocatalytic Properties of	National Symposium on Radiation and Photochemistry (NSRP-2003) 7 th Intl. Conf. on Solar Energy and Applied Photochemis-try (Solar'03) combined with 4 th Intl. Workshop on Environ. Photochemistry (Enpho '03) Workshop on Radiation and Photochemistry	IT-8 Oral Presentat ion made under Special Session on Nano- sci- &Nanot- echnol- ogy 27	March 3-5, 2003 23-28 th Feb., 2003 January 4-5, 2002	IIT, Kanpur Luxor Egypt Pune University
67. 68. 69.	Anil Kumar Anil Kumar Anil Kumar and Arvind Kumar Jain	Photochemistry of Surface Modified Semiconductor Nanocomposites Photophysical and Photochemical Aspects of Nanoparticles of Semiconductors – Investigations on Q-CdS Photophysics and Photocatalytic Properties of Sandwich Q-CdS-	National Symposium on Radiation and Photochemistry (NSRP-2003) 7 th Intl. Conf. on Solar Energy and Applied Photochemis-try (Solar'03) combined with 4 th Intl. Workshop on Environ. Photochemistry (Enpho '03) Workshop on Radiation and Photochemistry	IT-8 Oral Presentat ion made under Special Session on Nano- sci- &Nanot- echnol- ogy 27	March 3-5, 2003 23-28 th Feb., 2003 January 4-5, 2002	IIT, Kanpur Luxor Egypt Pune University

		Semiconductors				
70.	Anil	Electronic	ISRAPS Natl.	16	Feb. 21-	Univ. of
	Kumar and	Properties of Q-	Symp. on Rad.		23,	Roorkee,
	S. Mital	CdS Stabilized by	and Photo-		2001	Roorkee
		Adenine.	chemistry			
71.	Anil	Effect of doping of	ISRAPS Natl.	15	Feb. 21-	Univ. of
	Kumar and	Ag^+ on the	Symp. on Rad.		23,	Roorkee,
	<u>A.K. Jain</u>	photophysics of	and Photo-		2001	Roorkee
		mixed colloidal	chemistry			
		CdS – TiO ₂ system				
		– correlation of				
		photophysics with				
		its photocatalytic				
		activity				
72.	<u>D.P.S. Negi</u>	Photophysical and	ISRAPS Natl.	TH - 7	Feb. 21-	Univ. of
	and Anil	Photocatalytic	Symp. on Rad.		23,	Roorkee,
	Kumar	Behaviour of	and Photo-		2001	Roorkee
		$Cd(OH)_2$ – Coated	chemistry			
		Q-CdS in the				
		Presence of Certain				
		Heterocycles.			- 1 - 61	
73.	R.N.	Mechanisms of	ISRAPS Natl.	K-4	Feb. 21-	Univ. of
	Goyal, Anil	electrochemical and	Symp. on Rad.		23,	Roorkee,
	Kumar and	persultate oxidation	and Photo-		2001	Roorkee
	<u>P. Gupta</u>	of tryptophol.	chemistry			
74.	Anil	Kinetics of	ISRAPS Natl.	K-3	Feb. 21-	Univ. of
	Kumar,	oxidation of 3-	Symp. on Rad.		23,	Roorkee,
	<u>Vaishali</u>	amino-1-propanol	and Photo-		2001	Roorkee
	and P.	and certain	chemistry			
	Ramamurt-	diamines by silver				
	hy	(III).				
75.	Anil	Kinetics and	ISRAPS Natl.	K-2	Feb. 21-	Univ. of
	Kumar, <u><i>P</i>.</u>	Mechanism of	Symp. on Rad.		23,	Roorkee,
	<u>Kumar</u> and	Ethylenediamine-	and Photo-		2001	Roorkee
	Vaishali	tetracetic acid by	chemistry			
		Diperiodato-				
		argentate (III) ion				
76.	Anil	Electronic	Symposium on	34 (L-	January	RRL,
	Kumar	Properties of	Recent Trends in	30)	8 – 10,	Trivandrum
		Surface Modified	Photochemical		2001	
		Q-CdS Particles –	Sciences,			
		their Photocatalytic				

		Activity with Naked CdS Clusters				
77.	Anil	Photophysical and	Trombay	38	Jan. 12-	BARC,
	Kumar	photochemical	Symposium on	(Proce-	17,	Mumbai
		aspects of certain	Radiation and	edings,	2000	
		quantized coupled	Photochemis-try	Part II,		
		semiconductors.		499-505		
				(2000).		
78.	Anil	Photophysics and	2 nd Asian	87	June 27	Taejon,
	Kumar,	Photochemistry of	Photochemis-try		- 30,	South Korea
	D.P.S. Negi	$Cd(OH)_2$ -coated	Conference		1999	
	and Arvind	Quantized CdS and				
	Kumar Jain	colloidal CdS-TiO ₂				
		Semiconductors -				
		Study of Certain				
		Redox Reactions at				
		their Interface				
79.	Anil	Kinetics and	Seminar on	43	March	Chennai
	Kumar,	Mechanism of	Ultrafast		11-13,	
	Vaishali	Oxidation of	Processes in		1999	
	and P.	Ethylenediamine	Biology,			
	Ramamur-	and Related	Chemistry and			
	thy	Compounds by	Physics			
		Diperiodato-				
		argentate (III) ion				
80.	Anil	Photophysical	National	PC-7	Feb. 15-	Sambalpur
	Kumar and	Behaviour of Cd	Symposium on		17,	
	<u>D.P.S. Negi</u>	$(OH)_2$ -coated CdS	Radiation and		1999	
		Particles in the	Photochemistry			
		Presence of dl-				
		Tryptophan-study				
		of CdS-initiated				
		Photocatalytic				
01		Reaction	XX7 1 1	40	1 70	DDI
81.	Anil	Photocatalysis	Workshop on	48	Jan. 7-9	RRL,
	Kumar	Initiated by	Recent trends in		(1998)	Irivandrum
		Semiconductors -	Photochemical			
			Sciences			
		Analysis OI				
		Lonordan CdS				
		Dhataahariaal				
		Panotiona				
		Contain Organia				
		Certain Organics				

82.	Anil	Investigation of	Workshop on	01	Nov.	Univ. of
	Kumar	Primary	National Centre		28,	Madras,
		Photophysical and	for Ultrafast		1997	Madras
		Photochemical	Processes			
		Events in Irradiated				
		Quantized				
		Semiconductor				
		Particles				
83.	Anil	Study of	Recent Trends in	78	Sept.	Univ. of
	Kumar and	photophysical and	Instrumental		18-20,	Roorkee,
	<u>D.P.S. Negi</u>	photochemical	Methods of		1997	Roorkee
		behaviour of	Analysis			
		cadmium hydroxide				
		coated cadmium				
		sulphide particles				
84.	Anil	Kinetics of	Recent Trends in	69	Sept.	Univ. of
	Kumar,	Oxidation of	Instrumental		18-20,	Roorkee,
	<u>Vaishali</u>	Ethylene glycol by	Methods of		1997	Roorkee
	and P.	Diperiodato-	Analysis,			
	Ramamurth	argentate (III) - a	Roorkee			
	У	Comparison of				
		Thermal and				
		Photochemical				
		Reactions				
85.	Anil	Kinetics of	Recent Trends in	68	Sept.	Univ. of
	Kumar and	Oxidation of	Instrumental		18-20,	Roorkee,
	<u>P. Kumar</u>	Nitrilotriacetic acid	Methods of		1997	Roorkee
		by Diperiodato-	Analysis,			
		argentate (III)	Roorkee			
86.	Anil	Photocatalysis	Asian	136	June 23-	Hong Kong
	Kumar and	Initiated by	Photochemis-try		26,	
	S. Kumar	Quantized CdS	Conf.		1996	
		Particles - a				
		Mechanistic				
07		Investigation	DOT W 1 1	10	I 10	D U .
87.	Anil	Study of Early	DST workshop	13	Jan. 19-	Poona Univ.,
	Kumar	Events in Distant service1	on National		20,	Pune
		Photochemical Departience Initiated	Ultrafact		1995	
		keactions initiated	Dreases			
		by Quantized	Processes			
		Darticles				
88	Anil	Further Freedom Freedo	XVth IIIDAC	325	July 17	Prague
00.	Kumar and	Luminescence of	Symposium of	525	22 22	Czech
	S Kumar	CdS in the Presence	Photochemis try		22, 1994	Republic
	5. Kulliai	Cus in the rieschee	i notoenennis-u y		1994	Republic

		of Indoles - Study				
		of CdS Sensitized				
		Reactions of				
		Indoles				
89.	Anil	Photophysical and	Trombay	116	Jan. 17-	BARC,
	Kumar	Photochemical	Symposium on		21,	Bombay
		Processes Initiated	Radiation and		1994	
		by Nanometer-	Photochemis-try			
		sized Particles of				
		Semiconductors				
90.	Anil	Fast Kinetics	Discussion	Invited	July 30-	Inter
	Kumar	Research in the	Meeting on Fast	Talk	31,	University
		Study of	Chemical		1993	Consortium
		Nanoparticles	Reactions			for DAE
						Facilities,
						Indore
91.	Anil	Electron-transfer	Conference on	Oral	Dec. 19-	RRL,
	Kumar	Reactions in	Photochemistry	Presen-	21,	Trivandrum
		Semiconductor	and Laser	tation	1990	
		Microelectrodes	Chemistry			
92.	Anil	Electron and Hole	Mini-	Oral	May 13-	Max-Planck-
	Kumar	Injection of	symposium held	Presen-	15,	Institut,
		Colloidal CdS by	at Max-Planck-	tation	1987	Mulheium/R
		means of Pulse	Institut,	(14 th		uhr, West
		Radiolysis	Mulheium	May		Germany
		~		1987)	- 1	
93.	Anil	Catalytic Action of	National Seminar	Oral	Feb.,	Madras,
	Kumar	Colloidal	on Advances in	Presen-	1985.	
		Microelectrodes in	Photochemis-try	tation		
		Photoinduced	and Applications			
0.1		Chemical Reactions	I 1' C '	0.1	т	T . (
94.	Anii V1	Oxidation of	Indian Science	Oral	Jan.,	Tirupati,
	Kumar and	Anilines by Ag (II)	Congress	Presen-	1983	
05	P. Neta	Ions Vination and	Association	lation	Ion	Ahamdahad
95.	S.P.	Kinetics and Machanism of Aa^+	Congress	Dragon	Jan.	Anemdabad
	ord Anil	wiechanism of Ag	Association	totion	(1978)	
	Kumar	- catalyzeu Ovidation of Diols	Association	tation		
	Kullai	with Terminal				
		Hydroxyl groups by				
		Peroxydisulphate				
		Ion				
96	SP	Kinetics and	Convention of	Oral	Dec	Bangalore
90.	5.r .	Kincues and		Ulai	Dec.	Daligatore

	Srivastavaa	Mechanism of Ag ⁺	Chemists	Presen-	1976	
	nd Anil	- Catalyzed		tation		
	Kumar	Oxidation of				
		Glycerol by				
		Peroxydisulphate				
		Ion - An Analysis				
		of Consecutive				
		Reactions				
97.	S.P.	Kinetics and	Convention of	Oral	Dec.	Univ. of
	Srivastava	Mechanism of Ag ⁺	Chemists	Presen-	1975	Roorkee,
	and Anil	- Catalyzed		tation		Roorkee
	Kumar	Oxidation of				
		Glycerol by				
		Peroxydisulphate				
		Ion - A				
		Reinvestigation.				

(I) Total Papers (105) and in Peer Reviewed Journals 104 (In descending order of publication)

List of Publications in Journals		In descending order of publication year			
S. No.	Author(s)	Title	Journal	Vol., Page Nos.	Year
1	I. Ahmad and Anil Kumar*	Heteroatom(s) (N, S, P) Co- doped Reduced Graphene Oxide- based Binder-free Novel Energy Storage Electrode Material for High Energy Density Supercapacitor	Adv. Sustain. Syst., DOI:10.1002/ adsu.2024001 74 (2024).	-	2024
2	I. Ahmad and Anil Kumar*	In -situ synthesis of N, S co- doped electrode material by an environmentally benign method towards designing of high voltage (3.0 V) binder-free sustainable aqueous symmetric supercapacitor	Chem. Engg. J.	477, 146972 (1- 16)	2023
3	Atul Kumar, Anil Kumar* , G.D Varma	Flexible humidity-tolerant γ - Fe ₂ O ₃ -rGO-based nanohybrids for energy efficient selective NO ₂ gas sensing	New J. Chem.	47 (NJ047010), 4871- 4879	2023
4	S. Thareja and Anil Kumar*	One-pot <i>In-situ</i> Synthesis of Mn ₃ O ₄ /N-rGO Nanohybrids for the Fabrication of High Cell Voltage Aqueous Symmetric Supercapacitor – An Analysis of	Energy Fuels,	36, 24, 15177- 15187	2022

		Redox Activity of Mn ₃ O ₄ Towards Stabilizing the High			
		Potential Window in Salt-In-			
		Water and Water-In-Salt			
5	A tu1	Electrolytes	Wator	14 (22)	2022
5	Alui Kuman II	Groundwater Employing	water	14 (22),	2022
	Kumar, n	Maghemite Nanoparticles		3017	
	Joshi, Ann	8			
6	Kumar S Thoraia	In sity Wat Synthesis of N	I Dhys	125	2021
0	S. Inareja	T_{n-Suu} wet Synthesis of N-	J. Fllys.	125,	2021
	allu Allii Kumar*	Electrode Material	doi org/10.10	24837-	
	Kumar"	for High Derformance	$\frac{1}{21/222}$	24040	
		for High Performance	21/acs.jpcc.1		
		Non Enzymetic Electrochem	006415		
		Non-Enzymatic Electrochem-			
		Denoming and Uric acid at their			
		Dopamine and Uric acid at their			
7	A +1	Internace	I Matan	0 8002	2021
/	Atul	Ultrafast resistive type γ -Fe ₂ O ₃ -	J. Mater.	9 , 8002-	2021
	Kumar,	rGO nanohybrids based humidity	Chem. C	8010	
	Anil	sensor – a respiratory monitoring			
	Kumar*,	tool			
	G.D Varma			0.0000	
8	S. Thareja	Water-in-salt' electrolyte based	ACS	9, 2338-	2021
	and Anil	high voltage (2.7 V) sustainable	Sustainable	2347	
	Kumar*	symmetric supercapacitor with	Chem. Eng.		
		superb electrochemical			
		performance - an analysis of the			
		role of electrolytic ions in			
		extending the cell voltage			
9	Ajay	Remediation of Arsenic by Metal/	Separation	<i>50</i> , 283-	2021
	Kumar, H.	Metal Oxide Based	and	314	
	Joshi and	Nanocomposites/ Nanohybrids:	Purification		
	Anil	Contamination Scenario in	Rev.		
	Kumar	Groundwater, Practical	DOI:		
		Challenges, and Future	10.1080/1542		
		Perspectives.	2119.		
			2020.174464		
10			9	10 1 505 -	
10	Priyanka	Smart soft supramolecular hybrid	Dalton	49, 15095-	2020
	and Anil	hydrogels modulated by Zn^{2+} /	Trans.	15108	
	Kumar*	Ag NPs with unique			
		multifunctional properties and			
		applications			
11	Priyanka	Multistimulus-Responsive	ACS Omega	5, 13672-	2020

	and Anil	Supramolecular Hydrogels		13684	
	Kumar*	Derived by in situ Coating of Ag			
		Nanoparticles on 5'-CMP-			
		Capped β-FeOOH Binary			
		Nanohybrids with			
		Multifunctional Features and			
		Applications			
12	Sahil	High Electrochemical	Energy	8, 1901339	2020
	Thareja and	Performance of 2.5 V Aqueous	Technol.	(1 to 11)	
	Anil	Symmetric Supercapacitor based	DOI:		
	Kumar*	on Nitrogen doped Reduced	10.1002/ente.		
		Graphene Oxide.	201901339		
13	Anil	Environmentally benign pH-	New J.	<i>43</i> , 14997-	2019
	Kumar and	responsive cytidine-5'-	Chem.	15013	
	Priyanka	monophosphate molecule-			
	5	mediated akaganeite (5'-CMP-β-			
		FeOOH) soft supramolecular			
		hydrogels induced by the			
		puckering of ribose sugar with			
		efficient loading/release			
		capabilities.			
14	Komal	Zn ²⁺ /Cd ²⁺ -RNA-mediated Intense	J. Mater.	7,692-708	2019
	Gupta and	White-light-emitting Colloidal	Chem. C	,	
	Anil	CdSe Nanostructures in Aqueous			
	Kumar*	Medium – Enhanced			
		Photophysics and Porous			
		Morphology Induced by			
		Conformational Change in RNA.			
15	Anil	Supramolecular Assisted RNA-	J. Phys.	122,	2018
	Kumar	Templated Fluorescing Colloidal	Chem. C	7898-7915	
	and Komal	CdSe QDs Organized in Porous			
	Gupta	Morphology in the Presence of			
	-	1,3-Diaminopropane – Study of their Multifunctional Behavior			
16	M Kaloti	Sustainable Catalytic Activity of	ACS Omega	3(2)	2018
	and Anil	Ag-Coated Chitosan-Capped	nes ollega	1529–1545	2010
	Kumar*	Fe ₂ O ₂ Superparamagnetic Binary		1022 1010	
		Nanohybrids $(Ag-Fe_2O_3@CS)$			
		for the Reduction of			
		Environmentally Hazardous Dves			
		- A Kinetic Study of the			
		Operating Mechanism Analyzing			
		Methyl Orange Reduction			
17	M.	Electrochemical behavior of	New J.	<i>41</i> . 8333-	2017
	Khandel-	glycine mediated N-doped	Chem.	8340	

	wal and	reduced graphene oxide			
	Anil				
	Kumar*				
18	Anil	RNA-mediated fluorescent	J. Mater.	5, 6146-	2017
	Kumar	colloidal CdSe nanostructures in	Chem. (A)	6163	
	and Komal	aqueous medium - analysis of			
	Gupta	Cd ²⁺ induced folding of RNA			
		associated with morphological			
		transformation (0D to 1D)),			
		change in photophysics and			
		selective Hg ⁻ sensing.			
19	S. Firdoz	ZnO nanoparticles and their	IET	11 (3),	2017
	and Anil	acarbose-capped nanohybrids as	Nanobio-	329-335	
	Kumar*	inhibitors for human salivary	<i>tecnnol</i> . doi:0.1049/je		
		amylase.	t-		
			nbt.2016.011		
		~	5	1.0.0	
20	M. Kaloti	Synthesis of chitosan-mediated	J. Phys.	<i>120,</i>	2016
	and Anii	silver coated γ -Fe ₂ O ₃ (Ag- γ -	Chem. C	1/62/-	
	Kumar*	Fe ₂ O ₃ (<i>a</i> Cs)superparamagnetic		1/644	
		multifunctional applications			
		mutifulletional applications.			
21	M	One-not environmental friendly	Dalton	45 5180-	2016
21	M. Khandel-	One-pot environmental friendly amino acid mediated synthesis of	Dalton Trans	<i>45</i> , 5180- 5195	2016
21	M. Khandel- wal and	One-pot environmental friendly amino acid mediated synthesis of N-doped graphene-silver	Dalton Trans.	45 , 5180- 5195	2016
21	M. Khandel- wal and Anil	One-pot environmental friendly amino acid mediated synthesis of N-doped graphene-silver nanocomposites with enhanced	Dalton Trans.	45 , 5180- 5195	2016
21	M. Khandel- wal and Anil Kumar*	One-pot environmental friendly amino acid mediated synthesis of N-doped graphene-silver nanocomposites with enhanced multifunctional behavior	Dalton Trans.	45 , 5180- 5195	2016
21	M. Khandel- wal and Anil Kumar* M. Khand-	One-pot environmental friendly amino acid mediated synthesis of N-doped graphene-silver nanocomposites with enhanced multifunctional behavior Supercapacitor applications of 2-	Dalton Trans. Adv. Mater.	<i>45</i> , 5180- 5195 <i>1</i> , 08- 13	2016
21	M. Khandel- wal and Anil Kumar* M. Khand- elwal and	One-pot environmental friendly amino acid mediated synthesis of N-doped graphene-silver nanocomposites with enhanced multifunctional behavior Supercapacitor applications of 2- aminoisobutyric acid mediated N-	Dalton Trans. Adv. Mater. Proc.	<i>45</i> , 5180- 5195 <i>1</i> , 08- 13	2016 2016
21	M. Khandel- wal and Anil Kumar* M. Khand- elwal and Anil V	One-pot environmental friendly amino acid mediated synthesis of N-doped graphene-silver nanocomposites with enhanced multifunctional behavior Supercapacitor applications of 2- aminoisobutyric acid mediated N- doped graphene.	Dalton Trans. Adv. Mater. Proc.	<i>45</i> , 5180- 5195 <i>1</i> , 08-13	2016 2016
21	M. Khandel- wal and Anil Kumar* M. Khand- elwal and Anil Kumar*	One-pot environmental friendly amino acid mediated synthesis of N-doped graphene-silver nanocomposites with enhanced multifunctional behavior Supercapacitor applications of 2- aminoisobutyric acid mediated N- doped graphene.	Dalton Trans. Adv. Mater. Proc.	<i>45</i> , 5180- 5195 <i>1</i> , 08- 13	2016 2016 2015
21 22 23	M. Khandel- wal and Anil Kumar* M. Khand- elwal and Anil Kumar* M. Khandel-	One-pot environmental friendly amino acid mediated synthesis of N-doped graphene-silver nanocomposites with enhanced multifunctional behavior Supercapacitor applications of 2- aminoisobutyric acid mediated N- doped graphene. One-step chemically controlled wet synthesis of graphene	Dalton Trans. Adv. Mater. Proc. J. Mater. Chem (A)	<i>45</i> , 5180- 5195 <i>1</i> , 08-13 <i>3</i> , 22975- 22988	2016 2016 2015
21 22 23	M. Khandel- wal and Anil Kumar* M. Khand- elwal and Anil Kumar* M. Khandel- wal and	One-pot environmental friendly amino acid mediated synthesis of N-doped graphene-silver nanocomposites with enhanced multifunctional behavior Supercapacitor applications of 2- aminoisobutyric acid mediated N- doped graphene. One-step chemically controlled wet synthesis of graphene nanoribbons from graphene oxide	Dalton Trans. Adv. Mater. Proc. J. Mater. Chem. (A)	<i>45</i> , 5180- 5195 <i>1</i> , 08-13 <i>3</i> , 22975- 22988	2016 2016 2015
21 22 23	M. Khandel- wal and Anil Kumar* M. Khand- elwal and Anil Kumar* M. Khandel- wal and Anil	One-pot environmental friendly amino acid mediated synthesis of N-doped graphene-silver nanocomposites with enhanced multifunctional behavior Supercapacitor applications of 2- aminoisobutyric acid mediated N- doped graphene. One-step chemically controlled wet synthesis of graphene nanoribbons from graphene oxide for high performance	Dalton Trans. Adv. Mater. Proc. J. Mater. Chem. (A)	<i>45</i> , 5180- 5195 <i>1</i> , 08-13 <i>3</i> , 22975- 22988	2016 2016 2015
21 22 23	M. Khandel- wal and Anil Kumar* M. Khand- elwal and Anil Kumar* M. Khandel- wal and Anil Kumar*	One-pot environmental friendly amino acid mediated synthesis of N-doped graphene-silver nanocomposites with enhanced multifunctional behavior Supercapacitor applications of 2- aminoisobutyric acid mediated N- doped graphene. One-step chemically controlled wet synthesis of graphene nanoribbons from graphene oxide for high performance supercapacitor applications.	Dalton Trans. Adv. Mater. Proc. J. Mater. Chem. (A)	<i>45</i> , 5180- 5195 <i>1</i> , 08-13 <i>3</i> , 22975- 22988	2016 2016 2015
21 22 23 24	M. Khandel- wal and Anil Kumar* M. Khand- elwal and Anil Kumar* M. Khandel- wal and Anil Kumar* M.	One-pot environmental friendly amino acid mediated synthesis of N-doped graphene-silver nanocomposites with enhanced multifunctional behavior Supercapacitor applications of 2- aminoisobutyric acid mediated N- doped graphene. One-step chemically controlled wet synthesis of graphene nanoribbons from graphene oxide for high performance supercapacitor applications. Synthesis of glucose-mediated	Dalton Trans. Adv. Mater. Proc. J. Mater. Chem. (A) Green	<i>45</i> , 5180- 5195 <i>1</i> , 08-13 <i>3</i> , 22975- 22988 <i>17</i> , 4786-	2016 2016 2015 2015
21 22 23 24	M. Khandel- wal and Anil Kumar* M. Khand- elwal and Anil Kumar* M. Khandel- wal and Anil Kumar* M. Kaloti, Anil	One-pot environmental friendly amino acid mediated synthesis of N-doped graphene-silver nanocomposites with enhanced multifunctional behavior Supercapacitor applications of 2- aminoisobutyric acid mediated N- doped graphene. One-step chemically controlled wet synthesis of graphene nanoribbons from graphene oxide for high performance supercapacitor applications. Synthesis of glucose-mediated Ag - γ -Fe ₂ O ₃ multifunctional	Dalton Trans. Adv. Mater. Proc. J. Mater. Chem. (A) Green Chem.	<i>45</i> , 5180- 5195 <i>1</i> , 08-13 <i>3</i> , 22975- 22988 <i>17</i> , 4786- 4799	2016 2016 2015 2015
21 22 23 24	M. Khandel- wal and Anil Kumar* M. Khandel- wal and Anil Khandel- wal and Anil Kumar* M. Kaloti, Anil Kumar*	One-pot environmental friendly amino acid mediated synthesis of N-doped graphene-silver nanocomposites with enhanced multifunctional behavior Supercapacitor applications of 2- aminoisobutyric acid mediated N- doped graphene. One-step chemically controlled wet synthesis of graphene nanoribbons from graphene oxide for high performance supercapacitor applications. Synthesis of glucose-mediated Ag - γ -Fe ₂ O ₃ multifunctional nanocomposites in aqueous	Dalton Trans. Adv. Mater. Proc. J. Mater. Chem. (A) Green Chem.	<i>45</i> , 5180- 5195 <i>1</i> , 08-13 <i>3</i> , 22975- 22988 <i>17</i> , 4786- 4799	2016 2016 2015 2015
21 22 23 24	M. Khandel- wal and Anil M. Khand- elwal and Anil and Anil M. Khand- elwal and Anil M. Khandel- wal and Anil M. Kaloti, Anil M. Kaloti, Anil Anil Anil Anil Anil Anil Anil Anil	One-pot environmental friendly amino acid mediated synthesis of N-doped graphene-silver nanocomposites with enhanced multifunctional behavior Supercapacitor applications of 2- aminoisobutyric acid mediated N- doped graphene. One-step chemically controlled wet synthesis of graphene nanoribbons from graphene oxide for high performance supercapacitor applications. Synthesis of glucose-mediated Ag - γ -Fe ₂ O ₃ multifunctional nanocomposites in aqueous medium - a kinetic analysis of	Dalton Trans. Adv. Mater. Proc. J. Mater. Chem. (A) Green Chem.	<i>45</i> , 5180- 5195 <i>1</i> , 08-13 <i>3</i> , 22975- 22988 <i>17</i> , 4786- 4799	2016 2016 2015 2015
21 22 23 24	M. Khandel- wal and Anil Kumar* M. Khand- elwal and Anil Kumar* M. Khandel- wal and Anil Kumar* M. Kumar* M. Kumar* M. Kumar* M. Kumar* M. Kumar* M. Kumar* M. Kumar* M. Kumar* M. Kumar* M. Kumar* M. Kumar* M. Kumar* M. Kumar* M. Kumar* M. Kumar* M. Kumar* M. Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* Kumar* K	One-pot environmental friendly amino acid mediated synthesis of N-doped graphene-silver nanocomposites with enhanced multifunctional behavior Supercapacitor applications of 2- aminoisobutyric acid mediated N- doped graphene. One-step chemically controlled wet synthesis of graphene nanoribbons from graphene oxide for high performance supercapacitor applications. Synthesis of glucose-mediated Ag - γ -Fe ₂ O ₃ multifunctional nanocomposites in aqueous medium - a kinetic analysis of their catalytic activity for 4-	Dalton Trans. Adv. Mater. Proc. J. Mater. Chem. (A) Green Chem.	<i>45</i> , 5180- 5195 <i>1</i> , 08-13 <i>3</i> , 22975- 22988 <i>17</i> , 4786- 4799	2016 2016 2015 2015
21 22 23 24	M. Khandel- wal and Anil Kumar* M. Khand- elwal and Anil Kumar* M. Khandel- wal and Anil Kumar* M. Kaloti, Anil Kumar* and N.K. Navani	One-pot environmental friendly amino acid mediated synthesis of N-doped graphene-silver nanocomposites with enhanced multifunctional behavior Supercapacitor applications of 2- aminoisobutyric acid mediated N- doped graphene. One-step chemically controlled wet synthesis of graphene nanoribbons from graphene oxide for high performance supercapacitor applications. Synthesis of glucose-mediated Ag - γ -Fe ₂ O ₃ multifunctional nanocomposites in aqueous medium - a kinetic analysis of their catalytic activity for 4- nitrophenol reduction.	Dalton Trans. Adv. Mater. Proc. J. Mater. Chem. (A) Green Chem.	<i>45</i> , 5180- 5195 <i>1</i> , 08-13 <i>3</i> , 22975- 22988 <i>17</i> , 4786- 4799	2016 2016 2015 2015
21 22 23 24 24	M. Khandel- wal and Anil Kumar* M. Khand- elwal and Anil Kumar* M. Khandel- wal and Anil Kumar* M. Kaloti, Anil Kumar* and N.K. Navani	One-pot environmental friendly amino acid mediated synthesis of N-doped graphene-silver nanocomposites with enhanced multifunctional behavior Supercapacitor applications of 2- aminoisobutyric acid mediated N- doped graphene. One-step chemically controlled wet synthesis of graphene nanoribbons from graphene oxide for high performance supercapacitor applications. Synthesis of glucose-mediated Ag - γ -Fe ₂ O ₃ multifunctional nanocomposites in aqueous medium - a kinetic analysis of their catalytic activity for 4- nitrophenol reduction.	Dalton Trans. Adv. Mater. Proc. J. Mater. Chem. (A) Green Chem.	<i>45</i> , 5180- 5195 <i>1</i> , 08-13 <i>3</i> , 22975- 22988 <i>17</i> , 4786- 4799 <i>3</i> , 4297-	2016 2016 2015 2015 2015
21 22 23 24 25	M. Khandel- wal and Anil Kumar* M. Khand- elwal and Anil Kumar* M. Khandel- wal and Anil Kumar* M. Kaloti, Anil Kumar* and N.K. Navani U. Kumar Gaur, Anil	One-pot environmental friendly amino acid mediated synthesis of N-doped graphene-silver nanocomposites with enhanced multifunctional behavior Supercapacitor applications of 2- aminoisobutyric acid mediated N- doped graphene. One-step chemically controlled wet synthesis of graphene nanoribbons from graphene oxide for high performance supercapacitor applications. Synthesis of glucose-mediated Ag - γ -Fe ₂ O ₃ multifunctional nanocomposites in aqueous medium - a kinetic analysis of their catalytic activity for 4- nitrophenol reduction. Fe-induced morphological transformation of 1-D CuO	Dalton Trans. Adv. Mater. Proc. J. Mater. Chem. (A) Green Chem.	<i>45</i> , 5180- 5195 <i>1</i> , 08-13 <i>3</i> , 22975- 22988 <i>17</i> , 4786- 4799 <i>3</i> , 4297- 4307	2016 2016 2015 2015 2015

	and G. D.	with enhanced optical, magnetic			
	Varma	and ferroelectric properties.			
26	Anil	Photophysical aspects of varying	J. Phys.	<i>119</i> , 6314-	2015
	Kumar, B.	Zn ²⁺ / PbSe nanostructures	Chem. C	6323	
	Singh and	mediated by RNA leading to the			
	K. Gupta	formation of honeycomb-like			
		novel porous morphology			
27	Anil	Supramolecular-directed novel	Green	<i>17</i> , 2524–	2015
	Kumar and	superparamagnetic 5'-adenosine	Chem.	2537	
	S. K. Gupta	monophosphate templated β-			
		FeOOH hydrogel with enhanced			
		multi-functional properties.			
28	Anil	A novel synthesis of ultra-thin	J. Mater.	2 . 20345–	2014
	Kumar and	graphene sheets for energy	Chem. A.	20357	
	М.	storage applications using			
	Khandel-	malonic acid as a reducing agent.			
	wal				
29	Anil	5'-Guanosine monophosphate	J. Phys.	<i>118,</i>	2014
	Kumar and	mediated biocompatible porous	Chem. (B)	10543-	
	S.K. Gupta	hydrogel of β-FeOOH -		10551	
	-	viscoelastic behavior, loading and			
		release capabilities of freeze dried			
		gel.			
30	Anil	Biotemplated inorganic	Chem. Rev.	<i>114</i> , 7044-	2014
	Kumar and	nanostructures: Supramolecular	(ACS)	7078	
	V. Kumar	directed nanosystems of			
		semiconductor(s)/metal(s)			
		mediated by nucleic acids and			
		their properties.			
31	Anil	Amino acid mediated	New J.	38, 3457-	2014
	Kumar and	functionalization and reduction of	Chem.	3467	
	M.	graphene oxide – synthesis and			
	Khandelwa	the formation mechanism of			
	1	nitrogen-doped graphene.			
32	U. K. Gaur,	The synthesis of self-assembled	CrystEngC-	<i>16</i> , 3005–	2014
	Anil	1-D CuO nanochains in aqueous	omm	3014	
	Kumar and	medium and a study of their			
	G. D.	multifunctional features.			
	Varma				
33	Anil	Synthesis of 5'-GMP-mediated	J. Mater.	<i>1</i> , 5818-	2013
	Kumar and	porous hydrogel containing β -	Chem. (B)	5830	
	S.K. Gupta	FeOOH nanostructures:			
		optimization of its morphology,			
1		optical and magnetic properties.			

34	Anil	Optoelectronic properties of dual	Dalton	42 , 11455–	2013
	Kumar and	emitting RNA mediated colloidal	Trans.	11464	
	B. Singh	PbSe nanostructures.			
35	Anil	Synthesis of adenine mediated	J. Nanopart.	15:1466, 1-	2013
	Kumar and	superparamagnetic colloidal β-	Res.	16 (DOI	
	S.K. Gupta	FeOOH Nanostructure(s) – study		10.1007/s1	
		of their morphological changes		1051-013-	
		and magnetic behavior.		1466-z)	
36	Anil	Zn ²⁺ induced folding of RNA to	J. Phys.	117, 5386–	2013
	Kumar and	produce honeycomb like RNA -	Chem. (C)	5396	
	B. Singh	mediated fluorescing Zn ²⁺ /PbSe			
		nanostructures.			
37	Anil	Synthesis of guanosine 5'-	Eur. J.	269-279	2013
	Kumar, V.	monophosphate (GMP) -	Inorg.		
	Chaudhary	mediated Ag/CdS nanohybrids -	Chem.		
	and Vinit	their self-assembly and			
	Kumar	optoelectronic properties.			
38	Anil	RNA templated water soluble	RSC	2 , 9079–	2012
	Kumar and	Mg ² / PbSe porous	Advances	9090	
	B. Singh	nanostructures with dual			
20		fluorescence.		121 220	2011
39	Anii Vuuman and	Optical and magnetic behavior of	Mater.	131, 230-	2011
	Kumar and	Ag encapsulated β -Fe ₂ O ₃ core-	Chem. Phys.	240	
	A. Singhai	shell hollow Nanotubes.			
40	Anil	Synthesis and photophysics of red	Chem.	<i>47</i> (14),	2011
	Kumar and	emitting RNA templated PbSe	Commun.	4144 -	
	B. Singh	nanostructures.		4146	
41	А.	Synthesis, characterization and	S. Afr. J.	64 , 218-	2011
	Agarwal,	application of nano lepidocrocite	Chem.	224	
	H. Joshi	and magnetite in the degradation			
	and Anil	of carbon tetrachloride.			
	Kumar				
42	Anil	Optical, photophysical and	J. Mater.	<i>21</i> , 481-	2011
	Kumar and	magnetic behavior of GMP-	Chem.	496	
	A. Singhal	templated binary (β - Fe ₂ O ₃ /CdS)			
		and ternary (β -Fe ₂ O ₃ /Ag/CdS)			
		nanohybrids.			

43	S. Firdoz,	A novel amperometric biosensor	Talanta	83 , 269 -	2010
	Ma Fang,	based on single walled carbon		273	
	XiuliYue,	nanotubes with acetylcholine			
	Zhifei Dai,	esterase for the detection of			
	Anil	carbaryl pesticide in water.			
	Kumar,				
	Jiangbin				
44	Anil	Synthesis and optical properties	Inorg.	48 , 11032-	2009
	Kumar and	of Guanosine 5'-monophosphate -	Chem.	11038	
	V. Kumar	mediated CdS nanostructures: An			
		analysis of their structure,			
		morphology and electronic			
		properties.			
45	Anil	Synthesis and photophysics of	J.	208 , 195-	2009
	Kumar, A.	colloidal ZnS/PbS/ZnS	Photochem.	202	
	Jakhmola	nanocomposites - an analysis of	Photobiol.		
	and V.	dynamics of charge carriers.	A: Chem.		
	Chaudhary				
46	Anil	Supramolecular – directed	Chem.	5433-5435	2009
	Kumar and	synthesis of RNA-mediated	Commun.		
	V. Kumar	CdS/ZnS nanotubes.			
47	Anil	Synthesis of colloidal silver iron	Nanotech-	20,	2009
	Kumar and	oxide nanoparticles - study of	nology	295606-	
	A. Singhal	their optical and magnetic		295616	
		behavior.			
48	Anil	RNA-templated fluorescent	J. Phys.	<i>113</i> , 9553-	2009
	Kumar and	$Zn/PbS (PbS + Zn^{2+})$	Chem. C	9559	
	A.	supernanostructures.			
	Jakhmola				
49	Anil	Time resolved emission studies of	Nanotech-	<i>20</i> , 095703	2009
	Kumar and	Ag-adenine-templatedCdS	nology	- 095712	
	V.	(Ag/CdS) nanohybrids.			
	Chaudhary				
50	Anil	Self-assemblies from RNA-	J. Phys.	<i>112</i> , 3633-	2008
	Kumar and	templated colloidal CdS	Chem. C,	3640	
	V. Kumar	nanostructures.			
51	Anil	Synthesis of colloidal β -Fe ₂ O ₃	Nanotechno-	18 , 475703	2007
	Kumar and	nanostructures - influence of	logy		
	A. Singhal	addition of Co ² on their			
		morphology and magnetic			
		behavior.		100.075	
52	Anil	Optical and photophysical	J.	<i>189</i> , 272-	2007
	Kumar and	properties of Ag/CdS	Photochem.	279	
	V.	nanocomposites – an analysis of	Photobiol.		

	Chaudhary	relaxation of charge carriers.	A: Chem.		
53	Anil	RNA - mediated fluorescent Q-	Langmuir	<i>23</i> , 2915-	2007
	Kumar and	PbS nanoparticles.	(Lett.)	2918	
	А.				
	Jakhmola				
54	Anil	Photocatalytic degradation of	J. Colloid	<i>300</i> , 244-	2006
	Kumar and	aniline at the interface of TiO_2	Interface	252	
	N. Mathur	suspensions containing carbonate	Sci.		
		ions.			
55	Anil	Photophysics and charge	J. Colloid	297 , 607-	2006
	Kumar and	dynamics of Q-PbS based mixed	Interface	617	
	A.	ZnS/PbS and PbS/ZnS	Sci.		
	Jakhmola	semiconductor nanoparticles.			
56	Anil	Physicochemical and	Natl. Acad.	28 , 1-11	2005
	Kumar	photochemical properties of	Sci. Lett.		
		nanoscale semiconductors -	(Published as		
		dynamics of the charge carriers.	Lead Article)		
57	Anil	Photocatalytic oxidation of	Appl. Catal.	275,189-	2004
	Kumar and	aniline using Ag' -loaded TiO_2	A: Gen.	197	
	N. Mathur	suspensions.			
58	Anil	Electronic and photocatalytic	J. Mol.	<i>219</i> , 65-71	2004
	Kumar and	properties of purine(s)-capped Q-	Catal. A:		
	S. Mital	CdS nanoparticles in the	Chem.		
		presence of tryptophol.			
59	Anil	Synthesis and photophysics of 6-	Int. J.	6 (2), 61-68	2004
	Kumar and	dimethylaminopurine-capped Q-	Photoenerg.		
	S. Mital	CdS nanoparticles – a study of its			
60		photocatalytic behavior.		A (A 100	
60	Anil	Photophysics and photocatalytic	J. Colloid	265 , 432-	2003
	Kumar and	behavior of composite CdS-	Interface	438	
	S. Mital	purine nanoparticles in the	Sci.		
		presence of certain indoles.			
61	Anil	Photophysics and photocatalytic	J.	156 , 207-	2003
	Kumar and	properties of Ag^+ - doped	Photochem.	218	
	A.K. Jain	composite (CdS-TiO ₂) colloidal	Photobiol.		
		semiconductor.	A: Chem.		
62	R.N.	Electrochemical and persulphate	Indian J.	<i>41A</i> , 719-	2003
	Goyal, Anil	mediated oxidation of indole -3-	Chem.	726	
	Kumar and	ethanol			
	P. Gupta				
63	Anil	Synthesis and photophysics of	Photochem.	<i>1</i> , 737-741	2002
	Kumar and	purine-capped Q-	Photobiol.		
	S. Mital	CdSnanocrystallites.	Sci.		
64	Anil	Electronic properties of Q-CdS	J. Colloid	240 , 459-	2001

	Kumar and	clusters stabilized by adenine	Interface	466	
	S. Mital		Sci.		
65	Anil	Kinetics of oxidation of 3-amino-	J. Chem.	2 (7), 1174	2001
	Kumar,	1-propanol and related	Soc. Perkin	- 1179	
	Vaishali	compounds by silver (III) species.	Trans.		
	and P.				
	Ramamur-				
	thy				
66	R.N.	Oxidation chemistry of indole -3-	J. Chem.	2 (4), 618-	2001
	Goyal, Anil	methanol	Soc. Perkin	623	
	Kumar and		Trans.		
	P. Gupta				
67	Anil	Photophysics and photocatalytic	J. Colloid	238 , 310-	2001
	Kumar and	properties of Cd(OH) ₂ -coated Q-	Interface	317	
	D.P.S. Negi	CdS clusters in the presence of	Sci.		
		guanine and related compounds			
68	Anil	Photophysics and photochemistry	J. Mol.	<i>165</i> , 265-	2001
	Kumar and	of colloidal CdS-TiO ₂ coupled	Catal. A:	273	
	A. K. Jain	semiconductors - Photocatalytic	Chem.		
60		oxidation of indole	-	12 (100	• • • •
69	Anil	Photocatalytic and	J.	<i>134</i> , 199-	2000
	Kumar and	photophysical behaviours of	Photochem.	207	
	D.P.S. Negi	$Cd(OH)_2$ - coated Q-CdS in the	Photobiol.		
		presence of tryptophan	A: Chem.		
70	Anil	Kinetics and mechanism of	Int. J. Chem.	<i>32</i> , 286-	2000
	Kumar,	oxidation of ethylenediamine by	Kinet.	293	
	Vaishali	diperiodatoargentate (III) ion.			
	and P.				
	Ramamurth				
	У				
71	Anil	Photocatalytic oxidative C-C	Res. Chem.	25 , 695-	1999
	Kumar and	bond cleavage of 1,2-ethanediol	Intermed.	708	
	A. Kumari	initiated by aqueous titanium			
		dioxide dispersion - influence of			
		Ag^+ on the catalytic activity			
72	Anil	Kinetics of oxidation of glycine	Polyhedron	<i>18</i> , 773-	1999
	Kumar, P.	and related substrates by		780	
	Kumar and	diperiodaloargentale (III)			
	P.Ramam-				
	urthy				
73	Anil	Kinetics and mechanism of	J. Phys. Org.	<i>12</i> , 79-85	1999
	Kumar and	oxidation of nitrilotriacetic acid	Chem.		
	P. Kumar	by diperiodatoargentate (III)			
74	Anil	Separation and quantification of	Chem. Anal.	43 , 93-97	1998
	Kumar and	aniline and its oxidation products	(warsaw)		

	A. Panwar				
75	Anil	Colloidal CdS induced	J. Phys. Org.	<i>11</i> , 277-	1998
	Kumar and	photocatalytic reaction of 2-	Chem.	282	
	S. Kumar	methylindole - mechanistic analysis of oxidation of indoles			
76	Anil	Photocatalytic oxidative C-C	J. Chem.	<i>1</i> , 54-55	1998
	Kumar, S.	bond cleavage of the pyrrole ring	Res. (S)		
	Kumar and	in 3-methylindole induced by			
	D.P.S. Negi	colloidal CdS particles			
77	Anil	Kinetics of oxidation of 2,4-, 2.6-	Oxidn.	20 , 258-	1997
	Kumar and	, 3,4- and N, N-dimethylanilines	Commun.	266	
	A. Panwar	by $[Ag(OH)_4]^-$			
78	Anil	Catalytic effect of Ag^+ in	Chem. Lett.	711-712	1996
	Kumar and	colloidal CdS- induced			
	S. Kumar	photooxidation of aniline			
79	Anil	Enhancement of luminescence of	J.	83 , 251-	1994
	Kumar and	colloidal CdS in presence of	Photochem.	256	
	S. Kumar	indoles - study of CdS sensitized	Photobiol.		
		reaction of indole	A: Chem.		
80	Anil	Kinetics of oxidation of aniline	Bull. Chem.	67 , 1207-	1994
	Kumar and	and xylidine by	Soc. (Japan)	1212	
	A. Panwar	tetrahydroxoargentate ion.			
81	Anil	Gas chromatographic separation	Mikrochim.	<i>111</i> , 177-	1993
	Kumar and	of isomeric aminophenols,	Acta	182	
	A. Panwar	aniline, phenol, benzoquinone			
		and azobenzene on HP-1			
		capillary column			
82	Anil	Photoluminescence of colloidal	J.	69 , 91-95	1992
	Kumar	cadmium sulfide in the presence	Photochem.		
	andS.	of aniline - study of the CdS -	Photobiol.		
	Kumar	sensistizedphotocataytic reaction	A: Chem.		
83	Anil	Photoinduced processes in	ISRAPS	3 (1), 2-5	1992
	Kumar	colloidal semiconductors –	Bulletin		
		physicochemical properties and	(Published by		
		applications.	ISRAPS)		
84	S.P.	Selective oxidation of xylidines	Oxidn.	<i>14</i> (3),	1991
	Srivastava,	by peroxydisulphate ion -	Commun.	196-202	
	Anil	oxidation of 2,3-, 2,6- and 3,5 -			
	Kumar, S.	xylidines			
	Sinha and				
	A. Panwar				
85	Anil	Photochemistry and radiation	J. Phys.	93 , 2262-	1989
	Kumar, A.	chemistry of semiconductor	Chem.	2266	
	Henglein	colloids - preparation of colloidal			
	and H.	PbO ₂ and various electron			

	Weller	transfer processes			
86	Anil	Photochemistry of colloidal	J. Phys.	92 , 2587-	1988
	Kumar, E.	semiconductors - quenching of	Chem.	2591	
	Janata and	CdS fluorescence by excess			
	А.	positive holes			
	Henglein				
87	А.	Photochemistry and radiation	Chem. Phys.	<i>132</i> , 133-	1986
	Henglein,	chemistry of semiconductor	Lett.	136	
	Anil	colloids - reaction of the hydrated			
	Kumar, E.	electron with CdS and non-linear			
	Janata and	optical effects.			
	H. Weller				
88	Anil	Kinetics of oxidation of	J. Phys.	86 , 1674-	1982
	Kumar	ethanolamine and diols by Ag	Chem.	1678	
		(II).			
89	Anil	Reduction and demetalation of	J. Phys.	85 , 2830-	1981
	Kumar and	silver porphyrins in aqueous	Chem.	2832	
	P. Neta	solution.			
90	Anil	Oxidative C-C bond cleavage of	J. Am.	<i>103</i> , 5179-	1981
	Kumar	1, 2-diols by Ag (II)	Chem. Soc.	5182	
91	Anil	Complexation and oxidation of	J. Am.	<i>102</i> , 7284-	1980
	Kumar and	glycine and related compounds	Chem. Soc.	7289	
	P. Neta	by Ag (II).			
92	Anil	Oxidation of Ag^+ and $Ag (NH_3)_2^+$	J. Phys.	83 , 3091-	1979
	Kumar and	complex as studied by pulse	Chem.	3095	
	P. Neta	radiolysis.			
03	SP	Kinetics and mechanism of $A a^+$ -	Pov	26 939 -	1081
	Srivastava	catalysed ovidation of hevane-	Rev. Roumaina	946	1701
	A nil	1.6-dial by peroxydisulphate	de Chim	740	
	Kumar and	ion	ut Chill.		
	VK Gupta				
94	S P	Kinetics and mechanism of	Ovidn	1 265-273	1981
ĺ .	Srivastava	Ag(D-catalysed oxidation of	Commun	1,200 275	1701
	Anil	pentane -1 5-diol by	Commun.		
	Kumar	peroxydisulphate ion			
	AK Mittal				
	and VK				
	Gunta				
95	SP	Kinetics and mechanism of	Indian I	19 <i>A</i> 578-	1980
	Srivastava	periodate ovidation of salicylic	Chem	579	1700
	G	acid		515	
	U. Rhotteche				
	Dilattacila-				

	rjee, Anil				
	Kumar and				
	S. Pal				
96	S.P.	A kinetic study of	Indian J.	<i>17A</i> , 593 -	1979
	Srivastava,	peroxydisulphate oxidation of	Chem.	595	
	Anil	sulphadrugs - oxidation of			
	Kumar,	sulphanilamide.			
	A.K. Mittal				
	and V.K.				
	Gupta				
97	J.C. Gupta,	Kinetics and mechanism of Ag^{-} -	Indian J.	<i>18A</i> , 31-33	1979
	M.K.	catalysed oxidation of amyl	Chem.		
	Mahe-	alcohol, iso-amyl alcohol and			
	shwari, S.P.	crotylcohol by peroxydisulphate			
	Srivastava	10n.			
	and Anil				
	Kumar				
98	S.P.	Kinetics and mechanism of Ag^+ -	Kinet. Catal.	<i>19</i> , 1415-	1978
	Srivastava	catalysed oxidation of 1,4-		1418	
	and Anil	butanediol by			
	Kumar	peroxydisulphate ion.			
00	SP	This large character angles on		22 927	1070
99	5.1.	I nin layer chromatography or	Chem. Anal.	23,837	19/8
99	Srivastava,	some closely related	Chem. Anal. (Warsaw)	23,837	1978
99	Srivastava, V.K.	some closely related physiologically active 2- benzoyl	Chem. Anal. (Warsaw)	23, 837	1978
99	Srivastava, V.K. Mahesh, R.	some closely related physiologically active 2- benzoyl benzofuran deriavatives.	Chem. Anal. (Warsaw)	23, 837	1978
99	Srivastava, V.K. Mahesh, R. Sharma and	some closely related physiologically active 2- benzoyl benzofuran deriavatives.	Chem. Anal. (Warsaw)	23, 837	1978
99	Srivastava, V.K. Mahesh, R. Sharma and Anil	some closely related physiologically active 2- benzoyl benzofuran deriavatives.	Chem. Anal. (Warsaw)	23, 837	1978
99	Srivastava, V.K. Mahesh, R. Sharma and Anil Kumar	some closely related physiologically active 2- benzoyl benzofuran deriavatives.	Chem. Anal. (Warsaw)	23, 837	1978
100	Srivastava, V.K. Mahesh, R. Sharma and Anil Kumar S.P.	Ag ⁺ - catalyzedpresulphate	Chem. Anal. (Warsaw) Indian J.	<i>23</i> , 837 <i>15B</i> , 967-	1978
100	S.T. Srivastava, V.K. Mahesh, R. Sharma and Anil Kumar S.P. Srivastava	Ag+-catalyzedpresulphateoxidationproductsof1,3-	Chem. Anal. (Warsaw) Indian J. Chem.	23, 837 15B, 967- 968	1978
100	S.I. Srivastava, V.K. Mahesh, R. Sharma and Anil Kumar S.P. Srivastava and Anil	Ag+-catalyzedpresulphateoxidationproductsof1,3-propanediol,1-4-butanediol	Chem. Anal. (Warsaw) Indian J. Chem.	<i>23</i> , 837 <i>15B</i> , 967- 968	1978
100	S.T. Srivastava, V.K. Mahesh, R. Sharma and Anil Kumar S.P. Srivastava and Anil Kumar	Ag ⁺ - catalyzedpresulphate oxidation products of 1,3- propanediol, 1-4-butanediol and 1,5-pentanediol.	Chem. Anal. (Warsaw) Indian J. Chem.	23, 837 15B, 967- 968	1978
100	S.P. Srivastava, V.K. Mahesh, R. Sharma and Anil Kumar S.P. Srivastava and Anil Kumar S.P.	Ag+-catalyzedpresulphateoxidationproductsof1,3-propanediol,1-4-butanedioland1,5-pentanediol.Kinetics	Chem. Anal. (Warsaw) Indian J. Chem. Indian J.	<i>15B</i> , 967- 968 <i>15A</i> , 1114	1978 1977 1977
100	S.P. Srivastava, V.K. Mahesh, R. Sharma and Anil Kumar S.P. Srivastava and Anil Kumar S.P. Srivastava	Ag+-catalyzedpresulphateoxidationproductsof1,3-propanediol,1-4-butanedioland1,5-pentanediol.KineticsKineticsofAg+-catalyzedcatalyzedoxidation	Chem. Anal. (Warsaw) Indian J. Chem. Indian J. Chem.	<i>15B</i> , 967- 968 <i>15A</i> , 1114 - 1115	1978 1977 1977
100	S.P. Srivastava, V.K. Mahesh, R. Sharma and Anil Kumar S.P. Srivastava and Anil Kumar S.P. Srivastava and Anil	Inin layer chromatography orsomecloselyrelatedphysiologically active 2-benzoylbenzofuran deriavatives.Ag ⁺ -catalyzedpresulphateoxidationproductsof1,3-propanediol,1-4-butanedioland 1,5-pentanediol.KineticsofAg ⁺ KineticsofAg ⁺ -catalysedoxidationof1,3-propanediolbyperoxydisulphateion-a	Chem. Anal. (Warsaw) Indian J. Chem. Indian J. Chem.	<i>15B</i> , 967- 968 <i>15A</i> , 1114 - 1115	1978 1977 1977
100	S.P. Srivastava, V.K. Mahesh, R. Sharma and Anil Kumar S.P. Srivastava and Anil Kumar S.P. Srivastava and Anil Kumar	Ag+-catalyzedpresulphateoxidationproductsof1,3-propanediol,1-4-butanedioland1,5-pentanediol.KineticsKineticsofAg+-catalyzedpresulphateoxidation-and1,5-pentanediol.KineticsKineticsofAg+-catalysedoxidationof1,3-propanediol.KineticsofAg+areinvestigation.	Chem. Anal. (Warsaw) Indian J. Chem. Indian J. Chem.	<i>15B</i> , 967- 968 <i>15A</i> , 1114 - 1115	1978 1977 1977
100 101 102	S.P. Srivastava, V.K. Mahesh, R. Sharma and Anil Kumar S.P. Srivastava and Anil Kumar S.P. Srivastava and Anil Kumar S.P.	Inin layer chromatography orsomecloselyrelatedphysiologically active 2-benzoylbenzofuran deriavatives.Ag ⁺ -catalyzedpresulphateoxidationproductsof1,3-propanediol,1-4-butanedioland1,5-pentanediol.KineticsofAg ⁺ -catalysedoxidationof1,3-propanediol.KineticsofAg ⁺ -catalysedoxidationof1,3-propanediolbyperoxydisulphateion-areinvestigation.Kineticsand mechanism ofAg ⁺ -	Chem. Anal. (Warsaw) Indian J. Chem. Indian J. Chem.	<i>15B</i> , 967- 968 <i>15A</i> , 1114 - 1115 <i>15A</i> , 1061	1978 1977 1977 1977
100 101 102	S.P. Srivastava, V.K. Mahesh, R. Sharma and Anil Kumar S.P. Srivastava and Anil Kumar S.P. Srivastava and Anil Kumar S.P. Srivastava	Inin layer chromatography orsomecloselyrelatedphysiologically active 2-benzofuran deriavatives.Ag+-catalyzedpresulphateoxidationproductsof1,3-propanediol,1-4-butanedioland1,5-pentanediol.KineticsofAg+-catalysedoxidationoxidationof1,3-propanediol byperoxydisulphateion-areinvestigation.Kinetics and mechanism of Ag+-catalysed oxidation of glycerol by	Chem. Anal. (Warsaw) Indian J. Chem. Indian J. Chem. Indian J. Chem.	<i>15B</i> , 967- 968 <i>15A</i> , 1114 - 1115 <i>15A</i> , 1061 - 1065	1978 1977 1977 1977
100 101 102	S.P. Srivastava, V.K. Mahesh, R. Sharma and Anil Kumar S.P. Srivastava and Anil Kumar S.P. Srivastava and Anil Kumar S.P. Srivastava and Anil Kumar	Inin layer chromatography ofsomecloselyrelatedphysiologically active 2-benzoylbenzofuran deriavatives.Ag ⁺ -catalyzedpresulphateoxidationproductsof1,3-propanediol,1-4-butanedioland 1,5-pentanediol.KineticsofKineticsofAg ⁺ -catalysedoxidationof1,3-peroxydisulphateion-areinvestigation.Kinetics and mechanism ofAg ⁺ -catalysedoxidation ofglycerolbyperoxydisulphateionbyperoxydisulphatecatalysedoxidationoxidationofglycerolbyperoxydisulphate	Chem. Anal. (Warsaw) Indian J. Chem. Indian J. Chem. Indian J. Chem.	<i>15B</i> , 967- 968 <i>15A</i> , 1114 - 1115 <i>15A</i> , 1061 - 1065	1978 1977 1977 1977
100 101 102	S.P. Srivastava, V.K. Mahesh, R. Sharma and Anil Kumar S.P. Srivastava and Anil Kumar S.P. Srivastava and Anil Kumar S.P. Srivastava and Anil Kumar	Inin layer chromatography orsomecloselyrelatedphysiologically active 2-benzoylbenzofuran deriavatives.Ag ⁺ -catalyzedpresulphateoxidationproductsof1,3-propanediol,1-4-butanedioland1,5-pentanediol.KineticsofAg ⁺ -catalysedoxidationof1,3-propanediol.KineticsofAg ⁺ -catalysedoxidationof1,3-proxydisulphateion-areinvestigation.Kinetics and mechanism ofAg ⁺ -catalysedoxidation ofglycerolbyperoxydisulphateion-aion-Ananalysisofconsecutiveion-Ana	Chem. Anal. (Warsaw) Indian J. Chem. Indian J. Chem. Indian J. Chem.	<i>15B</i> , 967- 968 <i>15A</i> , 1114 - 1115 <i>15A</i> , 1061 - 1065	1978 1977 1977 1977
99 100 101 102	S.P. Srivastava, V.K. Mahesh, R. Sharma and Anil Kumar S.P. Srivastava and Anil Kumar S.P. Srivastava and Anil Kumar	Inin layer chromatography orsomecloselyrelatedphysiologically active 2-benzoylbenzofuran deriavatives.Ag ⁺ -catalyzedpresulphateoxidationproductsof1,3-propanediol,1-4-butanedioland1,5-pentanediol.KineticsofAg ⁺ -catalysedoxidationof1,3-propanediol.KineticsofAg ⁺ -catalysedoxidationof1,3-peroxydisulphateion-areinvestigation.Kinetics and mechanism ofAg ⁺ -catalysedoxidation ofglycerolbyperoxydisulphateion-Anion-Ananalysisofconsecutivereactions	Chem. Anal. (Warsaw) Indian J. Chem. Indian J. Chem. Indian J. Chem.	<i>15B</i> , 967- 968 <i>15A</i> , 1114 - 1115 <i>15A</i> , 1061 - 1065	1978 1977 1977 1977

103	S.P.	Rapid TLC separation of some	Z. Anal.	286 , 248	1977
	Srivastava,	closely related coupled products	Chem.		
	R.N.	of β -ketosester with			
	Goyal,	aryldiazonium chlorides.			
	Rajeev Jain				
	and Anil				
	Kumar				
104	S.P.	TLC separation of closely related	Z. Anal.	286 , 247	1977
	Srivastava,	diols.	Chem.		
	V.K. Dua				
	and Anil				
	Kumar				
105	S.P.	Kinetics of silver catalysed	J. Indian	<i>32</i> , 404 -	1975
	Srivastava,	oxidation of formamide by	Chem. Soc.	407	
	H. Singh	potassium peroxydisulphate.			
	and Anil				
	Kumar				

(K). Major Innovative Achievements in Research – In chronological Order

(a). Analysis of the catalytic role of Ag⁺ in initiating certain redox reactions

On this issue, in a series of papers, the species of silver were generated chemically, radiolytically and electrochemically and then investigated their reactions kinetically on early as well as longer time scales.¹⁻¹¹ Initial work on this area was carried out at *Rad. Lab., Univ. of Notre Dame, USA* in collaboration mainly with renowned Radiation Chemist, *Prof. P. Neta*. These investigations led to resolve some *long-debated issues* on catalytic role of Ag^+ in a number of redox reactions in aqueous medium.

S.No	Reference	Citations
•		*
1.	Anil Kumar and P. Neta, J. Phys. Chem. 83, 3091-3095 (1979).	22
2.	Anil Kumar and P. Neta, J. Am. Chem. Soc.102, 7284-7289 (1980).	47
3.	Anil Kumar, J. Am. Chem. Soc. 103, 5179-5182 (1981).	23
4.	Anil Kumar and P. Neta, J. Phys. Chem. 85, 2830-2832 (1981).	27
5.	Anil Kumar, J. Phys. Chem. 86, 1674-1678 (1982).	23
б.	Anil Kumar and A. Panwar, Bull. Chem. Soc. (Japan) 67, 1207-1212 (1994).	08
7.	Anil Kumar and A. Panwar, Oxidn. Commun. 20, 258-266 (1997).	04
8.	Anil Kumar and P. Kumar, J. Phys. Org. Chem. 12, 79-85 (1999).	51
9.	Anil Kumar, P. Kumar and P. Ramamurthy, Polyhedron 18, 773-780 (1999).	128
10.	Anil Kumar, Vaishali and P. Ramamurthy, Int. J. Chem. Kinet., 32, 286-293	82
	(2000).	
11.	Anil Kumar, Vaishali and P. Ramamurthy, J Chem. Soc. Perkin Trans. 2 (7)	02
	1174–1179 (2001).	

It also led us to realize the importance of **zero-valent Ag** (*now known as Ag nanoparticles*) in **catalysis** and led us to submit a proposal to DST, New Delhi in 1984 incorporating this and other literature ideas.

(b). Initiation of Research in the Area of Nanoscience and Nanotechnology

We had been among the **early workers, who have initiated work on nanomaterials in India**. In our first research proposal entitled. "*Catalytic Action of Colloidal Microelectrodes in Photoinduced Chemical Reactions*," submitted to DST, New Delhi in **1984**. The photocatalytic work using colloidal solution of metals and semiconductors as photocatalyst(s) was proposed. After it was sanctioned in **1985**, however, it could not be taken up as we got an offer from West Germany to collaborate with a **pioneering Radiation Chemist**, *Prof. A. Henglein, Hahn-Meitner, Institut, Berlin as a Guest Scientist to* carry out a research project in the related area.

(c). Synthesis and Analysis of Optical Properties of Semiconductor NPs/QDs – Effect of chemically generated charge carriers on the charge dynamics

In our early investigations with **Prof.** A. Henglein at HMI, Berlin on colloidal nanoparticles, the effect of chemically stored charge carriers on the optical and photophysical properties of some colloidal semiconductor NPs (CdS and PbO₂) was examined.¹²⁻¹⁴ Such a situation is often encountered in studies on nanomaterials involving *intense light sources like lasers and high energy radiation beam*. In the experiments with CdS NPs the excess electrons and holes were injected into the particles radiolytically / photolytically. It exhibited *non-linear optical* effect upon injection of electron (e_{aq} ⁻). The accompanied optical and emission changes were also monitored using combined photo- and radiation chemical techniques,^{12,13} revealing an interesting dynamics of charge carriers in irradiated semiconductors.

S.No.	Reference	Citations*
12	A. Henglein, Anil Kumar, E. Janata and H. Weller, Chem. Phys. Lett. 132,	181
	133-136 (1986).	
13	Anil Kumar, E. Janata and A. Henglein, J. Phys. Chem. 92, 2587-2591 (1988).	50
14	Anil Kumar, A. Henglein and H. Weller, J. Phys. Chem. 93, 2262-2266	23
l	(1989).	

(d). Synthesis, Analysis and Enhancement of Physicochemical Features of Nanomaterials for Multifunctional Applications

(i). Photocatalytic Action of Semiconductor Microelectrodes

In a subsequent work through a **DST project** awarded in 1989, colloidal particles of CdS semiconductor were employed as photocatalyst(s) in context of developing *efficient solar energy conversion systems*.¹⁵⁻¹⁹ The photogenerated electron-hole pairs were exploited to perform *redox reactions at the interface of semiconductor nanocrystallites* by using a variety of redox couples such as aromatic amines and indoles in aerated aqueous medium under *visible light irradiation* and carried out extensive mechanistic analysis involving the interfacial interactions and intermediates, which are very well cited.

S.No.	Reference	Citations*
15	Anil Kumar and S. Kumar, J. Photochem. Photobiol. A: Chem., 69, 91-95	27
	(1992).	
16	Anil Kumar and S. Kumar, J. Photochem. Photobiol. A: Chem., 83, 251-256	19
	(1994).	
16	Anil Kumar and S. Kumar, Chem. Lett., 711-712 (1996).	19
18	Anil Kumar, S. Kumar and D.P.S. Negi, J. Chem. Res. 1, 54-55 (1998).	03
19	Anil Kumar and S. Kumar, J. Phys. Org. Chem. 11, 277-282 (1998).	10

2. Improvement in Photocatalytic Action and Charge Separation in Illuminated Surface Modified and Binary Semiconductor Components

In other DST project awarded in 1994, surface of these particles were modified chemicallyby coating with $Cd(OH)_2$ and coupling of two semiconducting components like $CdS-Ag_2S,CdS-TiO_2$ were synthesized and identified by analyzing their characteristic absorption and emission, particle size, emission lifetime and redox reactivity.²⁰⁻²⁷ Coating of $Cd(OH)_2$ on Q-CdS produced composite particles with enhanced photostability ($\Phi_{-CdS} < 0.002$), luminescing efficiency and emission lifetime.²⁰⁻²¹ These particles were highly selective in initiating the photoinduced reactions of solutes like certain indoles and nucleic bases. Relaxation kinetics demonstrated that there is a distribution of charge carriers to various depths on the surface of $Cd(OH)_2$ - coated Q-CdS. Shallowly trapped hole affects the oxidation by intercepting the bulk solute *via* H-bonding interaction involving -OH of $Cd(OH)_2$ layer of CdS and certain functional group(s) of the additives. Deeply trapped hole remains inaccessible for the additives present either on the surface or in the bulk.

Doping of Ag^+ to Q-CdS generated *microheterojunctions* consisting of CdS - Ag_2S phases and doping of metal ions to oxygenated TiO₂ suspensions also increased the reactivity of holes.²³ The coupling of Cd(OH)₂ - coated Q-CdS with colloidal TiO₂ in aqueous medium removes Cd(OH)² layer to form possibly [CdS–TiO₂(OH)₂],and the illumination of these composites under visible light improved the charge separation leading to the enhanced reactivity of e⁻-h⁺ pair. The activation of both Cd(OH)₂ - coated Q-CdS and TiO₂ with certain transition metal ions and then coupling them with their respective non-activated component produces an efficient photocatalyst in certain cases.²⁴ The catalytic action of Ag⁺ is understood in terms of the positive redox potential of Ag⁺/ Ag couple, which serves to intercept the conduction band electron by reducing the e⁻ - h⁺ recombination.

Nucleic bases were observed tostabilize Q-CdS clusters effectively. Their capping improved the **photocatalytic activity at the interface significantly.**²⁵⁻²⁷ A few of these nanosystems could be recycled several times without any significant loss in reactivity.

Some research work addressing the **environmental issues** using TiO_2 suspensions in aqueous medium was also undertaken. Mechanisms of these reactions were analyzed,^{28,29} which are largely accepted by readers.

S.No	Reference	Citations
•		*
20	Anil Kumar and D.P.S. Negi, J. Photochem. Photobiol. A: Chem. 134, 199-	15
	207(2000).	
21	Anil Kumar and D.P.S. Negi, J. Colloid Interface Sci. 238, 310-317 (2001).	12

22	Anil Kumar and A.K. Jain, J. Mol. Catal. A: Chem. 165, 267-275 (2001).	102
23	Anil Kumar and A.K. Jain, J. Photochem. Photobiol. A: Chem. 156, 207-218	27
	(2003).	
24	Anil Kumar and S. Mital, J. Colloid Interface Sci. 240, 459-466 (2001).	18
25	Anil Kumar and S. Mital, Photochem. Photobiol. Sci. (commun.) 1, 737-41	14
	(2002).	
26	Anil Kumar and S. Mital, J. Colloid Interface Sci. 265, 432-438 (2003).	09
27	Anil Kumar and S. Mital, Int. J. Photoenerg. 6(2), 61-68 (2004).	13
28	Anil Kumar and N. Mathur, J. Colloid Interface Sci. 300, 244-252 (2006).	126
29	Anil Kumar and S. Mathur, Appl. Catal. A: Gen. 275,189-197 (2004).	73

(iii). Enhancement of Electronic Properties and Photophysics of Quantized II-IV and IV-VI Semiconductors

An interesting achievement was made by carrying out bio-molecule(s) mediated synthesis of II-VI and IV-VI semiconductor nanostructures in quantum-confined region.³⁰⁻⁴³ In a DST project funded under nanomission, interfacing of Q-ZnS with PbS and Q-PbS with ZnS has been utilized to produce tailored PbS nanocomposites with tuneable electronic properties.³⁰ The separation of charge is enhanced in case of PbS/ZnS core-shell particles. The deposition of Q-ZnS layer as shell at the interface of Q-ZnS/PbS produces ZnS/PbS/ZnS nanocomposites.^{31,32} The addition of Zn²⁺ further improves the charge separation in this system.

In our original work published in Langmuir (letter), RNA-capped Q-PbS³³ were produced in face centered cubic phase, which displayed excitonic features with relatively a strong narrow emission band (FWHM 70 nm) at 675 nm under broad excitation range extending from 330 to 620 nm. In the presence of Zn²⁺ these particles produced fluorescent Zn/PbS (PbS+ Zn²⁺) supernanostructures.³¹ We also demonstrated the nucleation and growth of templating Q-CdS NPs,³² CdS/ZnS nanotubes³⁵ to create novel nano- and micro assemblies. In other interesting work we have fabricated GMP-mediatednanowires³⁴ with increased separation of charge. We had also synthesized fluorescing CdSe nanostructures,^{42,43} and exhibited rectifying behaviour. These nanohybrids were exploited for sensing of toxic metal ions like Hg²⁺ up to 100 pm.⁴³

Lately we have succeeded in the synthesis of **dual fluorescing PbSe nanostructures** having a wide absorption range covering UV-visible-NIR region (200–1200 nm) of varied morphologies.³⁶⁻⁴² The excess metal ions such as $Mg^{2^+,4^+}$ and $Zn^{2^+,38}$ present on the RNA strand induces polarization in the PbSe through Se to result in varied supramolecular interactions by replacing Pb²⁺ among different building blocks to produce *porous and honeycomb like morphologies* in the process of self-assembly. The **poor NIR absorption** and **fairly intense fluorescence** in the wavelength range of *850–1100 nm* of the as synthesized PbSe nanohybrids and relatively higher red (~300 ns), and NIR lifetime (31.8 ns) as compared to those of organic fluorescent dyes (<1.5 ns) shows the potential of these materials to serve as an effective tool for the fluorescence imaging of body fluids and tissues in the NIR region, where tissues do not absorb.

From this work we have established that the specific RNA sequence is not required for mediating the synthesis of fluorescing II-VI (CdS, ZnS, CdSe) and IV-VI semiconducting nanostructures. Apart from that their growth and change in morphologies, their optoelectronic behaviour could be controlled quite effectively. Lately, their sensing applications are being performed.⁴¹⁻⁴³ We have recently developed *widely explored intense white emission* from *CdSe based nanostructures*.⁴⁴

We have also contributed a review article on **biotemplated inorganic nanostructures** published in *Chemical Reviews* comprising semiconductor(s)/metal(s) nanosystems mediated by nucleic acids and their optical, photophysical and magnetic properties.⁴⁵ This review is well cited.

Some work was also contributed on bare Fe and Mn doped CuO semiconducting nanostructures^{46,47} of varied morphologies and observed their **enhanced optical**, magnetic, ferroelectric and dielectric behavior.

S.No	Reference	Citations
•		*
30	Anil Kumar and A. Jakhmola, J. Colloid Interface Sci. 297, 607-617 (2006).	23
31	Anil Kumar and A. Jakhmola, J. Phys. Chem. (C), 112, 3633-3640 (2009).	13
32	Anil Kumar, A. Jakhmola and V. Chaudhary, J. Photochem. Photobiol A:	13
	Chem 208, 195- 202 (2009).	
33	Anil Kumar and A. Jakhmola, Langmuir (Lett.), 23, 2915-2918 (2007).	81
34	Anil Kumar and V. Kumar, J. Phys. Chem. (C), 112, 3633-3640 (2008).	27
35	Anil Kumar and V. Kumar, Inorg. Chem., 48, 11032-11037 (2009).	15
36	Anil Kumar and V. Kumar, Chem. Commun., 5433-5435 (2009).	05
37	Anil Kumar and B. Singh, Chem. Commun., 47 (14), 4144 - 4146 (2011).	15
38	Anil Kumar and B. Singh, Dalton Trans., 42, 11455–11464 (2013).	09
39	Anil Kumar and B. Singh, J. Phys. Chem. (C), 117, 5386–5396 (2013).	08
40	Anil Kumar, B. Singh and K. Gupta, J. Phys. Chem. (C), 119, 6314-6323	-
	(2015).	
41	Anil Kumar and B. Singh, RSC Advances, 2, 9079–9090 (2012).	05
42	Anil Kumar and K. Gupta, J. Mater. Chem. (A), 5, 6146-6163 (2017).	14
43	Anil Kumar and K. Gupta, J. Phys. Chem. (C), 122, 7898–7915 (2018).	01
44	Anil Kumar and K. Gupta, J. Mater. Chem. (C), 7, 692-708 (2019). DOI:	-
	10.1039/c8tc05560b	
45	Anil Kumar and V. Kumar, Chem. Rev. 114, 7044-7078 (2014).	74
46	Umesh Kumar Gaur, Anil Kumar and G. D. Varma CrystEngComm (RSC),	26
	16, 3005–3014 (2014).	
47	Umesh Kumar Gaur, Anil Kumar and G. D. Varma, J. Mater. Chem. C, 3,	26
	4297- 4307 (2015).	

(iv). Mechanistic Analysis of Charge Separation Dynamics and Photophysics of Metal-Semiconductor binary Nanohybrids

In Ag/CdS nanocomposites the content of Ag was noted to modify the nature of surface interaction between the two components by influencing the emission behavior and charge carrier dynamics in a complex scheme.^{48,49} At low molar ratio of Ag:CdS an enhancement in fluorescence is observed which has been attributed to the excited state charge transfer interaction between the two components. Relaxation kinetics of charge carriers of CdS also revealed the formation of **transitory CT complex** between excited CdS and Ag, in which the extent of electron transfer is controlled by the amount of Ag. With biotemplated Ag/CdS nanocomposites⁴⁸⁻⁵⁰ an enhancement in the intensity of

emission of bare CdS was observed by about 7 folds associated with an increase in the separation of charge. This **mechanism**, proposed for the first time, is well cited.

S.No.	Reference	Citations*
48	Anil Kumar and V. Chaudhary, J. Photochem. Photobiol. A: Chem. 189, 272-	29
	279 (2007).	
49	Anil Kumar and V. Chaudhary, Nanotechnology, 20, 095703 - 095712 (2009).	18
50	Anil Kumar, V. Chaudhary and V. Kumar, Eur. J. Inorg. Chem., 269-279	01
	(2013).	

(e). Iron Oxide Based Nanosystems for Multifunctional Applications

(v). Development of Iron Oxide based Nanostructures and Nanohybrids

Iron oxide based magnetic nanostructures due to their wide ranging multi-disciplinary applications are being considered to be important being environmentally benign, biocompatible and cost effective. In a CSIR sponsored project we have developed several **iron oxide based nanosystems** in **beta phase** in different morphologies exhibiting superparamagnetic behavior.⁵¹⁻⁵⁴ For the first time silver iron oxide (**AgFeO**₂) NPs⁵¹ in β - phase depicted a narrow size distribution and the water soluble core-shell nanostructures consisting of colloidal Ag in the core and iron oxide hollow nanotubes in the shell.⁵² The **binary** and **ternary nanohybrids** of iron oxide with other semiconducting (CdS) and metal (Ag) NPs⁵³ have also been synthesized and analyzed the dynamics of charge carriers in the irradiated systems.

S.No.	Reference	Citations*
51	Anil Kumar and A. Singhal, Nanotechnology, 18, 475703 (2007).	47
52	Anil Kumar and A. Singhal, Nanotechnology, 20, 295606-295616 (2009).	19
53	Anil Kumar and A. Singhal, Mater. Chem. Phys. 131, 230-240 (2011).	14
54	Anil Kumar and A. Singhal, J. Mater. Chem., 21, 481-496 (2011).	17

(vi). Biotemplated colloidal β -FeOOHNanohybrids & Hydrogels – their Formation, Loading and Release Capabilities

In other project biotemplated colloidal β –FeOOH nanostructures were synthesized by the hydrolysis of FeCl₃ using adenine,⁵⁵ 5'–AMP⁵⁶ and 5'–GMP⁵⁷ biomolecules as template(s). In these nanostructures, β –FeOOH displays enhanced optical and magnetic features as compared to that of bare β –FeOOH, which are fairly different to those of α –Fe₂O₃, β –Fe₂O₃, γ –Fe₂O₃, Fe₃O₄ and γ –FeOOH. Bare β –FeOOH exhibits the formation of nanorods, whereas, in the presence of biotemplates, it showed the biomolecule dependent change(s) in the morphology by converting nanorods to quantum dots. The extent of interaction of biomolecule with Fe³⁺ controlled this conversion and follows the order: *5'–AMP* > *5'–GMP* > *adenine*. These templates have also been found to form hydrogels with β –FeOOH. In view of the template like *5'-GMP* / *5'-AMP* and β -FeOOH being biocompatible and the hydrogels being superparamagnetic, we have explored their viscoelastic properties, loading and release capabilities in the context of their possible biomedical applications.⁵⁸ In our recent work we have achieved remarkable success in developing hitherto unreported *5'–CMP molecule based smart hydrogels*.⁵⁹⁻⁶¹ The high porosity, surface area, % swelling, and loading and release performance of the hydrogel indicate its potential for drug delivery and other biological / biomedical applications.

S.No.	Reference	Citations*
55	Anil Kumar and S. K. Gupta, J. Nanopart. Res., 15:1466, 1-16 (2013) (DOI	17
	10.1007/s11051-013-1466-z).	
56	Anil Kumar and S. K. Gupta, Green Chem., 17, 2524–2537 (2015).	25
57	Anil Kumar and S. K. Gupta, J. Mater. Chem. (B), 1, 5818-5830 (2013).	18
58	Anil Kumar and S. K. Gupta, J. Phys. Chem. (B), 118, 10543-10551 (2014).	15
59	Anil Kumar and Priyanka, New J. Chem. 43, 14497-15013 (2019).	14
60	Priyanka and Anil Kumar, ACS Omega, 5, 13672–13684 (2020).	12
61	Priyanka and Anil Kumar, Dalton Trans. 49, 15095-15108 (2020).	04

(vii). Greener Protocols for gamma Iron Oxide (γ -Fe₂O₃) based Nanosystems - their SERS, Biological and Catalytic Applications

Some nanocomposites/nanohybrids of iron oxide like glucose-mediated and chitosan-mediated silver coated γ -Fe₂O₃ like Ag- γ -Fe₂O₃⁶⁰ and Ag- γ -Fe₂O₃@Cs^{61,62} have been explored for their catalytic, SERS and antibacterial activities using the model dye(s) and bacteria, respectively. The superparamagnetic behavior of as synthesized binary nanocomposites at room temperature with high value of saturation magnetization makes them highly suitable for usage as catalyst, allowing their convenient recyclability. All the components of the as-synthesized nanocomposite(s) being biocompatible, environmentally benign, demonstrating effective catalytic, SERS and antibacterial activities qualify them as a greener nanosystems(s) with multifunctional applications. The catalytic reduction of certain dyes investigated kinetically at their interface followed Langmuir-Hinshelwood's mechanism. Further work on these nanosystems is in progress.

S.No.	Reference	Citations*
60	M. Kaloti, Anil Kumar and N. Navani, Green Chem., 17, 4786-4799 (2015).	40
61	M. Kaloti, and Anil Kumar, J. Phys. Chem. C 120, 17627-17644 (2016).	43
62	M. Kaloti, and Anil Kumar, ACS Omega, 3 (2), 1529–1545 (2018).	32

(viii). Greener Protocols for Synthesis of Reduced Graphene Oxide (rGO) – Supercapacitor and SERS Applications

We have synthesized **ultra-thin**⁶³ **and a few layer(s) thick N-functionalized graphene sheets**⁶⁴. ⁶⁷employing **mild/environmentally friendly reducing agents** for the effective reduction of GO under **mild experimental conditions** in **aqueous medium**. The higher nucleophilicity of the malonic acid is observed to be more effective for the **efficient reduction of GO** to produce thin graphene sheets. The judicious control of pH of the reaction mixture brings a change in the morphology of graphene into **nanoribbons**⁶⁸ involving supramolecular interactions among the residual functionalities of reduced GO and malonic acid besides controlling the *nucleophilicity* of the later. The changed morphology of graphene exhibit improved characteristic features for the **high performance supercapacitor applications**.⁶⁸ The functionalization of N-doped graphene (GRH-Gly) with Ag NPs further enhanced the multifunctional features as regards to its conductivity, surface area and **SERS**.⁶⁸ *In the recent past*, we have succeeded in *extending the potential window of symmetric supercapacitor to fairly high value of 2.5 V* with significantly *higher energy density* at *power density using salt-in-water (neutral) electrolyte*.⁶⁹ These systems are found to have relatively better conducting behaviour with high value of **specific capacitance** at higher current densities, exhibiting potential for **supercapacitor** **applications**.⁶²⁻⁶⁸ Water-in-Salt like electrolyte enhance the cell voltage to 2.7 V.⁷⁰⁻⁷¹ Further work on making devices using *environmentally benign materials*, *electrolytic components* and *protocols* is in progress. A patent on enhanced features of these materials has been granted. Lately, we have developed Mn_3O_4 nanocube-decorated N-rGO nanosheets, as Mn_3O_4 is considered to be environmentally compatible with high specific capacitance, and high oxygen evolution potential. It exhibited the cell potential of 2.7 V with superior electrochemical features.⁷² In a remarkable breakthrough, we could enhance the *cell voltage of a symmetric supercapacitor up to 3.0 V* and also achieved excellent electrochemical features.⁷³⁻⁷⁵ Further work on these system is in progress.

We	have	lately	also	developed	γ-Fe ₂ O ₃ -rGO-based	nanohybrids	for	energy	efficient	selective
hum	idity ⁷⁶	and N	O_2 gas	s sensors. ⁷⁷						

- - -

*Note - The citations shown above are as per Google Scholar Data including Self-citations.

In summary, we have made several innovative contributions to the research in the area of *Physical Chemistry* covering wide ranging topics on *Nanotechnology Related Research, Chemical Kinetics, Photochemistry/ Radiation chemistry*.

(M). Details of M.Tech. /M. Phil. Supervised (21):

S. No.	Name of the Student Name of the Supervisor(s) Year	Title of Diss	sertatio	on		
1.	Avdesh Kumar	Synthesis	of	Glucose	Mediated	Ag/ZnO
	Prof. Anil Kumar	Nanocompo	sites ar	nd a Study of	Their Optical	Properties

	2014	
2.	Harsh Kumar	Synthesis of PVP Stabilized Silver Nanostructures and
	Prof. Anil Kumar	Study of Their Physical and Biological Properties
2	2013	Senting of Centric Crated Famile Negagarticles
3.	Drof Anil Vumor	Synthesis of Cystein-Coated-Ferrite Nanoparticles-
	2013	Their Surface
4	Kanchan Vaday	Synthesis of Unconverting NaGdE Tm ³⁺ /Yh ³⁺
-7.	Prof. Anil Kumar	Nanoparticles- Study of Their Biocompatible Surface
	2012	Modification
5.	Queeny Dasgupta	Synthesis of Biotemplated Fluorescent Silver
	Prof. Anil Kumar	Nanostructures and Their Physicochemical Properties
	2012	
6.	Anuj Kumar	Synthesis and Characterization of Ag-supported
	Prof. Anil Kumar	Hydroxylapatite γ -Fe ₂ O ₃ Nanocomposites (AgHAP- γ -
-	2011	$\frac{Fe_2O_3}{2}$
1.	Linu M Drof Anil Vumor	Synthesis of Surface-Modified Superparamagnetic iron
	2011	Oxide Nanocomposites
8	Shaik Firdaz	Synthesis of Metal Oxide Nanoparticles and Their
0.	Prof. Anil Kumar	Inhibitory Action for Glycoside Hydrolases
	2010	
9.	Ashutosh Agarwal	Synthesis, Characterization and Application of
	Prof. Anil Kumar	Nanoparticles in Water Remediation
	Prof. Himanshu Joshi	
	2009	
10.	Santi Prasad Chakrabarti	Study of Physical and Electrical Properties of Ferric
	Prof. Anii Kumar Drof D. Noth	Oxide Nanoparticles
	2004	
11.	Neeru Gupta	Physicochemical Properties of Metal Sols
	Prof. Anil Kumar	5 1
	2003	
12.	Lallan Singh Yadav	Development of TiO ₂ Supported Rigid Material- Study
	Prof. Anil Kumar	of Their Photocatalytic Activity
12	2001	
13.	Anshuman Jakhmola	Photocatalytic Redox Reactions of Certain Organics
	2000	Initiated by 110 ₂ Suspensions
14.	Tanan Bhatnagar	Analysis of Photocatalytic Behaviour of TiO ₂
	Prof. Anil Kumar	Suspension in Aqueous Medium for Certain Redox
	1999	Couple(s)
15.	Jagat Singh	Photooxidation of Certain Organics Using TiO ₂
	Prof. Anil Kumar	suspension as catalyst
	1998	
16.	Kuldeep Singh Bhandari	Study of Ruthenium (II) Tris(Bipyridyl) – Sensitized
	Prof. Anil Kumar	Photochemical Reaction of Indole – Effect of Certain
17	1995 Lalit Mahan Singh Nagi	Study of Codmium Sulphide Induced Photochemical
17.	Prof Anil Kumar	Reaction of 2.3- Dimethyl Indole
	1995	Reaction of 2,5° Dimetry rindole
	1775	

18.	Ranjana Uniyal	Photosensitized Reaction of Aniline Using Mixed and
	Prof. Anil Kumar	co-Colloids Catalysis of Zinc Sulfide and Cadmium
	1993	Sulfide
19.	Nidhi Bharti	Photosensitized decomposition of 1-Naphtylamine
	Prof. Anil Kumar	Using Visible Light Radiation
	1992	
20.	Raksha Gupta	Photochemical Treatment of Industrial Coal Wastes-
	Prof. Anil Kumar	Photodecomposition of Indole
	1991	
21.	Anita Agarwal	Separation and Quantization of Halophenols and Related
	Prof. Anil Kumar	Compound by Gas Chromatography
	1990	

(N). Details of M.Sc. Project supervised (40):

S. No.	Name of the Student Name of the Supervisor(s)	Title of Project
	Year	
1.	Rajesh Prasad Verma	Synthesis of Sulphur-Doped Reduced Graphene
	Prof. Anil Kumar	Oxide - Its Electrochemical Characterization and
	2022	Sensing of Mercury (II) Ions on Its Surface
2.	Akash	Synthesis of Phosphorous-Doped Reduced Graphene
	Prof. Anil Kumar	Oxide – Its Electrochemical Characterization and
	2022	Sensing of Dopamine and Uric Acid on Its Surface
3.	Vikas Yadav	Synthesis of Activated Carbon Material Derived
	Prof. Anil Kumar	From Eucalyptus Leaves and Their Electrochemical
	2021	Applications.
4.	Priyanka	Synthesis of Tryptophan-Mediated Hydrogels and
	Prof. Anil Kumar	Their Applications
	2021	
5.	Charchita Gautam	Synthesis of Carboxymethyl Cellulose and 5'-
	Prof. Anil Kumar	Adenosine Monophosphate-Mediated Supramolecular
	2020	Nanoparticles
6.	Naveen Ojha	Reduction And Functionalization of Graphene Oxide
	Prof. Anil Kumar	Employing Thiamine Hydrochloride as A Reducing
	2020	Agent - Synthesis of N and S-Doped Reduced
		Graphene Oxide
7.	Sumit Kumar Yadav	Synthesis and Characterization of Cysteine-Capped
	Prof. Anil Kumar	MnS Nanoparticles – an Analysis of their
	2019	Photophysical Behavior
	Narendra Kumar Yadav	Synthesis and Characterization of γ - Fe ₂ O ₃
8.	Prof. Anil Kumar	Nanoparticles using Aloevera as a Capping Agent –
0	2019	Analysis of its Photocatalytic Activity
9.	Parveen Drof A mil Kumon	Synthesis and Characterization of Fe ₃ O ₄ -SiO ₂ -
	2018	Photocatalytic Activity for Methylene Blue
	2010	Degradation

10.	Arun Garg	Synthesis and Characterization of β -Cyclodextrin
	Prof. Anil Kumar	Coated Fe_3O_4 Nanoparticles and Study of their
11	2017	Surface and Photocatalytic Behavior
11.	Sanjana Drof Anil Kumon	Synthesis of PVA-Coaled Zerovalent from
	2016	four the Paduction of 4 Nitronhenol
12	Z010 Kriti Soth	Synthesis of MCM-41 – Its Use as a Support for the
12.	Prof Anil Kumar	Preparation of CdS Nanoparticles
	2015	
13.	Sneha Paul	Synthesis and Characterization of Polyvinyl Alcohol
	Prof. Anil Kumar	Coated γ - Fe ₂ O ₃ Nanoparticles
	2014	
14.	Moni Kumari Gupta	Synthesis of Nanohydroxyapetite- A Study of Its
	Prof. Anil Kumar	Interaction with Elastin
	2012 (M.Sc. Integrated)	
15.	Venkatesh Tunuguntla	Synthesis and Characterization of Manganese Ferrite
	Dr. Anil Kumar	Nanoparticles by Non- Hydrolytic Sol- Gel Process
	2010	
16.	Pankaj Kumar Choubey	Microwave Assisted Synthesis of Zinc Oxide
	Dr. Anil Kumar	Nanoparticles.
17	2008 Dihvandu Kumar Das	Symthesis and Characterization of TiO Nonconsticles
17.	Dibyendu Kumar Das	Synthesis and Characterization of TiO ₂ Nanoparticles
	2007	
18	Debashree Das	HPLC Analysis of Some Fullerenes in Carbon Soot
10.	Dr. Anil Kumar	
	2005	
19.	Aarti	Synthesis and Physicochemical Properties of
	Dr. Anil Kumar	Colloidal Iron Oxide
	2004	
20.	Mohammad Ilyas	Kinetics of Oxidation of Tartaric Acid by
	Dr. Anil Kumar	Diperiodatoargentate (III) Ion
	2003	
21.	Amar Deep	Kinetics of Oxidation of Benzyl Alcohol by
	Prof. Anil Kumar	Diperiodato- Argentate (III) Ion
22	2002	Photonhysical Properties of Land Sulphide Particles
22.	Dr. Anil Kumar	Photophysical Properties of Lead Sulplide Particles
	2002	
23.	Arvind Kumar Geiwal	Kinetics of Oxidation of N- Propylamine
	Dr. Anil Kumar	byDiperiodato- Argentate (III) Ion
	2001	- J
24.	Virendra singh	HPLC Separation of Certain Purines, Pyrimidines and
	Dr. Anil Kumar	Tryptophan
	2000	
25.	Vijender Kumar	Kinetics of Oxidation of Acetone byDiperiodato-
	Prof. Anil Kumar	Argentate (III) Ion
	1999	<u> </u>
26.	Sanjeev Sharma	Effect of Doping of Doping of Fe^{2+} and Fe^{3+} on the
	Prof. Anil Kumar	Photocatalytic Activity of TiO ₂ for the Oxidation of
	1998	1,2- Ethanediol

27.	Amit Kaushik	Colloidal CdS- Sensitized Photochemical Reaction of
	Prof. Anil Kumar	Indole-3-Acetic Acid
	1997	
28.	Minakshi Verma	Kinetics of Oxidation of Succinic Acid by
	Dr. Anil Kumar	DiperiodatoArgentate (III)
	1997	
29.	Saniay Gunta	Chromatographic Separation of Indoles and related
	Prof. Anil Kumar	compounds
	1996	
30	Charu Arora	Kinetics of Oxidation of Alcohols by Bis (Periodato)
50.	Prof Anil Kumar	Argentate (III)
	1005	Aigentate (III)
31	SuchotaSangawar	Synthesis of Composite Semiconductor (CdS/PhS)
51.	Brof Anil Kumar	Particles and Study of their Dhysical Properties
	1001. Ann Kumar	rationes and Study of their rifysical riopetites
	1994	
32.	Alok Gupta	Reaction of Tetrahydroxoargentate (III) Ion with 1-
	Prof. Anil Kumar	Napthylamine.
	1993	
33.	A.S.R. Prasad	Light Induced Reactions of 1-Napthylamine Using
	Prof. Anil Kumar	Cadmium Sulphide as a Photocatalyst
	1993	
34.	Anurag Kumar Bhatnagar	Synthesis and Photochemical Behaviour of Silver (II)
	Dr. Anil Kumar	Phenanthroline Complexes.
	1992	
35.	Vivek Kumar	Study of Photoluminescence Property of Cadmium
	Prof. Anil Kumar	Sulphide in Presence of Aromatic Amines and their
	1991	Photocatalytic Reactions
36.	MeherBala Lalit	Effect on Photoluminescence of Zinc Sulphide by
	Prof. Anil Kumar	Different Metal Ions
	1990	
37.	Anumolu Anand Kumar	Mechanism of Reaction of Ag (III) Species With
	Prof. Anil Kumar	Some Organics
	1989	
38.	Archana	Separation of Aromatic Amines Phenols and Related
	Prof. Anil Kumar	Compounds by HPLC
	1989	
39.	Prasanna Kumary M.N.	The Redox Reactions and Stabilisation of Unusual
	Prof. Anil Kumar	Valency States of Metal
	1985	
40.	Arunan. K.	Physico- Chemical Studies of Few Transitions Metal
	Prof. Anil Kumar	Complexes
1	1984	

(O). Summary of Research Contribution:

I have been among the early contributors *on Nanoscience/Nanotechnology* in *India*, *who has initiated research in this area*, as is also evidenced from our published research work/presentations/proposals submitted to DST, New Delhi. Our first research project on these systems was sanctioned as early as in 1985 by DST *vide letter* D.O. No. 23(1P-20)/84 dated Dec. 10,

1985, but could not be taken up at that time as I received an offer to join as a Guest Scientist at Hahn-Meitner-Institut, Germany with pioneering Radiation Chemist, Prof. A. Henglein on radiation chemical aspects of colloidal nanomaterials and worked there till 1988. Thereafter, we initiated work on synthesis and photochemistry of metal and semiconductor nanosystems at IIT Roorkee mainly through **projects** funded by the **DST**, New Delhi.

Our research work on these as well as earlier systems was recognized by *The National Academy of Sciences, Allahabad, India* and was **Elected as Fellow** of this prestigious academy in 2003.

The 2023 Nobel Prize in Chemistry was awarded to: Moungi G. Bawendi, Louis E. Brus and Aleksey Yekimov for their "*Discovery and Synthesis of Quantum Dots*" involving their work on *colloidal nanoparticles* (NPs). Brus's work on colloidal CdS nanoparticles was published in 1982. It is heartening to mention that we were also involved on similar colloidal nanoparticles since mid nineteen eighties and was embodied in our proposal submitted to DST, New Delhi in 1984. *Our very first papers contributed in this area in 1986 and, thereafter, in a series of papers involved colloidal CdS nanoparticles.* We have published several research papers and supervised Ph.D. thesis on the colloidal NPs investigated by Prof. L.E. Brus and Prof. Moungi G. Bawendi.

Over the years, we have *addressed a number of issues pertaining to research* on *nanomaterials* and contributed immensely to their synthetic protocols, physicochemical properties and applications. Apart from these, I have been instrumental at IIT Roorkee in establishing a *Centre of Excellence–Nanotechnology* and also introduced a *new teaching program - M.Tech.* (*Nanotechnology*). This is still running successfully.

Lately, increasing environmental issues have necessitated developing newer materials following *greener protocols*. In this context, during last one and a half decade our research has focused on developing *greener/biocompatible nanohybrids* and integrated nanostructures with *enhanced multifunctional features*, addressing some *environmental issues*. Specifically, biopolymers and their components/ other biocompatible molecules have provided the *novel capping agent(s)* for growing different greener nanohybrids of semiconductors (II-VI/IV-VI /iron oxide(s)/oxyhydroxide(s) semiconductors/metal(s)) with 1D / 2D / 3D / porous nano-architectures. These researches include *semiconductor(s)/metal(s)* and their nanohybrids with excellent photophysical/ photochemical, *catalytic behavior* as well as designing of *smart hydrogels*.

In recent years, we have fabricated some newer electrode materials, viz. ultra-thin / a few layer(s) thick N-functionalized reduced graphene oxide (rGO) sheets, nanoribbons, and Ag-coated rGO, employing mild/environmental friendly reducing agents for the reduction of GO in aqueous medium for devising efficient supercapacitors. Lately, we have succeeded in extending the potential window of symmetric supercapacitor to fairly high value of 2.5 V with significantly high energy

density@power density in salt in water like electrolytes. These systems exhibited *better conductivity* with fairly high value of *specific capacitance at higher current densities*. This work has been *identified* by the prestigious Confederation of Indian Industry (CII) among the innovations from IIT Roorkee during 2021. We also got one patent granted in 2022 on the related work. In "Water-in-Salt" like electrolyte(s) the cell voltage has further been enhanced to *remarkably high value to 3.0 V*. A patent on enhanced features of these materials has been granted this year in March 24.

Most of our work in the area of nanoscience/nanotechnology is published in *International* Journals of repute with an average impact factor of~6 indicating the importance of our work in the context of current scientific importance. Among 24 Ph.D. students supervised so far, 20 students have carried out their research on nanosystems.

In our ongoing research, we aim to develop innovative *functionalized greener nanostructures* as electrode material(s) and optimization of their electrochemical performance in *aqueous electrolyte(s)* to fabricate *high-voltage* supercapacitor to act as *efficient energy storage device(s)*. Besides, being *environmentally benign* and functionalized, these nanohybrids are also expected to be suitable for *selective electrochemical sensing* with *lower limit of detection, hydrogen storage* and *electrocatalytic* applications.